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Preface 

Fuzzy sets theory has been more than five decades of development and 
applications since the finding of it by L. A. Zadeh in 1965. The scope of 
development and applications ranges from theoretical basis to practical 
foundation and from natural science and engineering to humanity, medi-
cine, and artificial intelligence. The broad array of applications demon-
strates the value of the theory. 

I have researched fuzzy sets, fuzzy systems and fuzzy neural network 
theories and their applications almost four decades since 1981. Since 
around 1999, I have been thinking an important question which I think  
that it is important and interesting: To where in science ocean can fuzzy 
sets theory lead us? Why I always consider this question? Because I  
regard Prof. Zadeh as one Columbus in Science Ocean and I am a diligent 
Chinese sailor in his ship, I really want to know where I can go and what 
I can discover on Zadeh’s research ship.  

Although fuzzy sets theory has been more than fifty years since it was 
founded, people still think it as a new subject in Science Ocean. Of course, 
we all have known many other similar new subjects such as neural  
networks, machine learning, deep learning, soft computing, data mining, 
big data, granular computing, rough sets, and the like.  

For any one of these new subjects, it must be in the face of a strict test 
question: Can it solve an important problem which cannot be solved by 
using any methods or theories coming from any other subjects? 

For example, probability theory had ever not admitted by a lot of  
mathematicians in its early development stage partly on account of its 
coming from gambles. Later on, a mathematician, Kolmogorov, built the 
mathematical theory for it by means of measure theory. More importantly, 
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a lot of successful applications of probability theory made its case  
improved. As we all know, without probability theory, we even do not 
know how to do weather forecast nowadays. Without probability theory, 
we do not know what statistic mechanics is. Without probability theory, 
quantum mechanics does not have today’s situation, because Schrodinger 
Equation is one of backbones of quantum mechanics, and the solutions  
of Schrodinger Equation have been given their statistical interpretation  
by de Broglie, a French physicist, the solutions are called de Broglie 
waves. This means that, without probability theory, basically there is  
no today’s quantum mechanics; therefore basically there is no today’s 
modern physics.  

For any one new subject in science, considering some important open 
problem, I think that there are four cases: 

Case 1: the new subject cannot solve the open problem, and any other 
subjects cannot solve the open problem, too; 

Case 2: the new subject cannot solve the open problem, but there is  
one of other subjects can solve the open problem, which means that the 
new subject is of little science worth; 

Case 3: the new subject can solve the open problem, but there are  
some of other subjects can also solve the open problem, which means that 
the new subject is just of a little science worth; 

Case 4: the new subject can solve the open problem very well, but all 
other subjects cannot solve the open problem, which means that the new 
subject is of a great science worth in no doubt.  

Now I return to talk about fuzzy sets theory and fuzzy systems.  
Whether there exists at least one important problem in science or in real 
practice application such that fuzzy sets theory and fuzzy systems can  
effectively solve it but just this problem cannot be solved by using any 
methods or theories coming from any other subjects? Maybe there is only 
one answer: no. 

Why I use the word “maybe”? I should tell a science story coming  
from 2002 to explain this question. Dr. Li H. X. with his fuzzy sets theory 
research group successfully achieved the stable control experiment of 
four-stage inverted pendulum in 2002, which is real hardware equipment 
not a simulation and was the first experiment in the world (see Photo. f.1). 
This four-stage inverted pendulum can be called linear four-stage inverted 
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pendulum because its cart or slider bearing four rods moves along a linear 
sliding rail, while the four rods move around a plane. This problem  
belongs to fuzzy control theory while I do not involve this issue in this 
book. I want to write another book to focus on my own control theory with 
fuzzy sets theory and introduce the stable control experiment of four-stage 
inverted pendulum in details.  

As we all know, the experiment of three-stage inverted pendulum  
has been a very difficult thing and a few of people can do this experiment. 
As far as I can see, from 2002 to now, I have not learned that second  
experiment of four-stage inverted pendulum appears. 

 

 
Photo. f.1. linear four-stage inverted pendulum 

 
Much more difficult about the stable control experiment of four-stage 

inverted pendulum is on the spherical four-stage inverted pendulum. 
“Spherical” means that its cart or slider bearing four rods moves around 
plane, while the four rods move around in three-dimension space. From 
2002 to 2010, after going through a lot of control method exploring and 
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stable control experiments, Dr. Li H. X. with his fuzzy sets theory research 
group successfully achieved the stable control experiment of spherical 
four-stage inverted pendulum in 2010, which is also real hardware  
equipment not a simulation and was the first experiment in the world (see 
Photo. f.2). 
 

 
Photo. f.2. spherical four-stage inverted pendulum 

 
Around 2012 to 2013, my student Dr. Hu Dan was a visiting scholar at 

San Jose State University and Prof. T. Y. Lin was her supervisor. Dr. Hu 
had a chance to tell the four-stage inverted pendulum story to Prof. Lin, 
and then Prof. Lin told the story to Prof. Zadeh. And Prof. Zadeh invited 
me to UC Berkeley with carrying my linear four-stage inverted pendulum 
(my spherical four-stage inverted pendulum is too big and heavy to carry 
to USA) to give a talk and to do demonstration in front of Prof. Zadeh.  
Of course I also visited San Jose State University invited by Prof. T. Y. 
Lin and discussed some interesting problems on fuzzy sets theory with  
Prof. Lin. The following photos can show the situations of my visiting 
Prof. Zadeh in April, 2013. 
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Photo. f.3. Prof. Zadeh and Prof. Li 

 

 

Photo. f.4. stable linear four-stage inverted pendulum in UC Berkeley 
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Photo. f.5. Prof. Zadeh and Prof. Li 

 

 
Photo. f.6. (from left to right) Dr. D. G. Wang, Prof. Y. Zheng, Dr. D. Hu,  

Prof. T. Y. Lin, Prof. L. A. Zadeh, Prof. H. X. Li and Dr. J. Y. Wang 
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After I came back from UC Berkeley to China, Prof. Zadeh sent me a 
thank note. In order to make readers to learn how to exchange academic 
viewpoints for two scholars on some academic problems, I would better 
copy the note as following: 
 
Dear Professor Li: 

Many thanks for coming to Berkeley to make a presentation of  
your work on the four-stage inverted pendulum. The system which you 
described is a remarkable achievement. I believe that what you achieved 
is worthy of a major prize. I was highly impressed by the sophisticated 
mathematics which you employed to stabilize the pendulum. I was also 
highly impressed by the two-stage self-learning pendulum. Please accept 
my compliments and congratulations on your path-breaking achievement. 
 
With my thanks and warm regards 
Sincerely, 
Lotfi Zadeh                                    
Professor Emeritus 
Director, Berkeley Initiative in Soft Computing (BISC) 
 
 

In my answer letter, I explained my idea on the relationship between the 
variable universe adaptive fuzzy control and type-2 fuzzy sets, which is as 
follows: 
 
Dear Professor Zadeh, 

I just came back to China from USA yesterday and I have blessedly 
received your “thank note”. Many thanks for you giving me such a good 
opportunity to have my talk in Berkeley.  

I view that the idea on the fuzzy sets defined on variable universe is 
essentially a kind of type-2 fuzzy sets or a kind of generating method of 
type-2 fuzzy sets. In other words, some finite type-1 fuzzy sets can gener-
ate a type-2 fuzzy set. By the use of my experiments, I think that type-2 
fuzzy sets are much more powerful than type-1 fuzzy sets.  

I regard you as another Columbus leading us to discover many new 
lands or continents in science world. I am a Chinese diligent sailor on your 
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ship continuing to do hard work on fuzzy sets. When I obtain some new 
good work, I will visit you again in the future.  
 
Sincerely yours, 
H. X. Li 

 
 
To make me very sad is that our well-beloved mentor Prof. L. A. Zadeh 

passed away in 2017 so that I have not any chance to visit him.  
Prof. Zadeh had ever been a well-known control theory expert and  

did many important contributions on control theory. Since 1965, he  
had devoted himself to develop his fuzzy sets theory. As I mentioned  
four Cases above for any new subjects, particularly Case 4 is the most  
important. I think that the stable control of the four-stage inverted pendu-
lum should strong enough support Zadeh’s fuzzy sets theory, which means 
that the Case 4 has been realized for fuzzy sets theory. 

I need to think another question calmly: the stable control of the four-
stage inverted pendulum is of strong application background. Can fuzzy 
sets theory and fuzzy systems lead us into main fields of science such  
as physics and mathematics to solve some important and interesting  
problems?  

Since I came back from UC Berkeley in 2013, I have been doing some 
research on quantum mechanics by using fuzzy sets theory and fuzzy  
systems. Fortunately, I have got some important and interesting research 
results so that I have this book to be published to show these research  
conclusions not only in quantum mechanics but in mathematics as well. 
These conclusions are as the following. 

On physics, I have pointed that the motion of a mass point in classic 
mechanics has also waviness in Section 8.3. The wave function of the  
motion of a mass point has surely no uncertainty. On the other hand,  
although the motion of a particle has surely uncertainty, the wave function 
of the particle must have no uncertainty. Thus, we can consider the relation 
between the wave function of a mass point in classic mechanics and the 
wave functions of some particles in quantum mechanics. As I discussed  
in Section 8.2, I have revealed the relation by means of Theorem 8.2.1.  
In other words, by using wave functions of both classic mechanics and 
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quantum mechanics, classic mechanics and quantum mechanics are  
unified, which is the significance of our unified theory about the two kinds 
of mechanics. 

I need to emphasize my new and important and interesting conclusion: 
The motion of a mass point has also so-called duality: wave-mass-point 
duality, which is very similar to the case of the motion of a particle in 
quantum mechanics and is an important support to our unified theory on 
classic mechanics and quantum mechanics. It is not difficult to understand 
that Theorem 8.2.1 should be the most important in physics. 

On mathematics, another new and important and interesting conclu- 
sion of me is coming from Theorem 8.4.1 which means that, for any a 
continuous function, there must be a sequence of probability spaces and a 
sequence of random vectors defined on the sequence of probability spaces, 
such that the sequence of conditional mathematical expectations of the  
sequence of random vectors uniformly converges to the continuous func-
tion. This conclusion can establish a new bridge between real analysis and 
probability theory. 

It is worth noting that, Prigogine had ever pointed out his conclusion  
by many experiments: world is random not certain (see [20]). In fact,  
Theorem 8.4.1 just prove his idea, because, as we all know, a large part  
of physical phenomenon can be described by some kind of continuous 
functions, and based on Theorem 8.4.1, any one of these continuous  
functions must be the limit of the sequence of conditional mathematical 
expectations of a sequence of random vectors.  

Besides, in Section 8.5, approximation theory significance of Theorem 
8.2.1 is discussed in detail and its main conclusion is expressed by  
Theorem 8.5.1. This undoubtedly gives a new kind of new method to  
function approximation theory. 

Another important thing is worth noting that, in this book, I give the 
definition of wave-set duality which its idea is coming from the wave-
particle dualism in quantum mechanics (see Section 1.2).  

In this book, there are three unifications problems and their solution 
schemes: One is just the unification between classic mechanics and quan-
tum mechanics (see Chapter 8); second is the unification between fuzzy 
systems and stochastic systems (see Chapter 5 and Chapter 6); third is  
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the unification between Riemann integral and Lebesgue integral (see 
Chapter 9). 

At last, I want to say, Zadeh’s one of the most basic contributions  
for fuzzy sets theory is that he extended characteristic functions of  
Cantor’s sets to membership functions of fuzzy sets. I regard this thing as 
Extension Principle. Why this Extension Principle? Because a principle is 
a principle and a theorem is a theorem, a principle needs not to be proved 
but a theorem must be proved. As I pointed out in Section 2.10, Zadeh’s 
extension principle can be proved by this Extension Principle which I  
suggested in Section 2.10. This means that Zadeh’s extension principle is 
not a principle but a theorem or a proposition. 
 

Li Hong-Xing 
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Chapter 1   

Fuzzy Sets 

1.1   Cantor’s Sets 

Set theory was found in 1874 by G. Cantor, a German mathematician. 
One of the important methods used by Cantor in creating sets is the 
comprehension principle, which means that for any P , a property, all 
the objects with P and only with P can be included together to form a set 
denoted by the symbol as follows: 

  ( )A a P a   

where A expresses the set and “ a ” means an object in A . Generally, “ a ” 
is referred to as an element or a member of A . The symbol ( )P a repre-
sents the fact that the element “ a ” satisfies P , and “{} ” means that all 
the elements satisfying P are collected to form a set. In logic, the com-
prehension principle is stated as the following: 

  ( ) ( )a a A P a   .  

People routinely use the word “concept”, for example, the word “man” 
is a concept. A concept has its intension and extension; by intension we 
mean attributes of “man”, and by extension we mean all of the objects 
defined by the concept. That is, sets can be used to express concepts. 
Since set operations and transformations can express judging and reason-
ing, modern mathematics based on set theory becomes a formal language 
for describing and expressing certain areas of knowledge. 

In a practical problem, a set is always regarded as an extension of a 
concept so that a topic under discussion may be limited to the same 
“scope”. For example, if the topic of discussion is the concept “man”, 
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then the scope is limited to “people”, and it is not necessary to consider 
other objects that have no relation to the concept. Let all people be  
denoted by U , and all men selected fromU form a set A  in U , in fact it 
is a subset of  U , which is just the extension of the concept “man”.  

All objects of a “concept” under discussion form a universe which  
is also called universal set or total set. We prefer to use universe. A  
universe is often denoted by capital letters, e.g. by , , , ,U V X Y . Each 
object in the universe is called an element, denoted by corresponding 
lower letters , , , ,u v x y . A number of elements in U is a set on U ,  
denoted by capital letters , , ,A B C.  

A universe U may be imaged as a “rectangle” and the elements of U
are abstract “points” without mass and size. A set on U may be repre-
sented by a “circular ring” or “oval” in the “rectangle”. The relationship 
between the elements of U and a set A  on U  is depicted as a Venn  
diagram in Figure 1.1.1. 

 

 

Fig. 1.1.1.  A Venn diagram containing a universe, a set and its elements 
 

For any element u  in U and a set A  on U , u  either belongs to A  
(denoted by u A ) or does not belongs to A  (denoted by u A ). If 
u A , i.e. u lies inside of the oval, then the relationship between u  and 
A  is denoted by 1; If  u A , i.e. u  lies outside of the oval, then the rela-

tionship between u and A is denoted by 0. This means we can in fact get a 
mapping based on A as follows: 

 
1,     ,

: {0,1}, ( )
0,A A

u A
U u u

u A
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The mapping A  is called characteristic function of the set A , which 
clearly indicates membership between an element u and a set A .  

Let A  and B  be any two sets on U . If A  and B  satisfy the follow-
ing condition:  

   u U u A u B     ,  

we call A  being a subset of B  or A  being included by B  or B  includ-
ing A , denoted by A B  or B A . So when we say that A  is a set on 
U , this just means A  is a subset of U , i.e. A U .  

We all well know that this class of sets,  ( )U A A U  , is called 
power set of U . In U , we define two binary algebraic operations ,   
and one unitary algebraic operations “ c ” as follows 

 

    

    

 

: ( ) ( ) ( )

( , ) ( , ) ,

: ( ) ( ) ( )

( , ) ( , ) ,

: ( ) ( )
( ) \ .c

U U U

A B A B A B u U u A u B

U U U

A B A B A B u U u A u B

c U U
A A c A U A u U u A

 

     

 

     



    



  



  



  

  

 

  

This algebraic system  ( ), , ,U c   is called set algebra, where   is 
logic symbol: extraction, meaning “or”, and   is conjunction, meaning 
“and”.  

It is easy to prove the following results: for any two sets , ( )A B U , 
we have 

  
  
  

( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) 1 ( ) ,c

A B A B

A B A B

AA

u U u u u

u U u u u

u U u u

  

  

 

   

   

   





 

where   is of another meaning: max  , i.e. 
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  , max{ , }a b a b a b     

and min  , i.e. 

  , min{ , }a b a b a b    . 

In addition, let V  be another universe and for any a set ( )B V , we 
well know the symbol:  

  ( , ) ,A B a b a A b B     

which is called the direct product of A  and B , especially we have 

  ( , ) ,U V u v u U v V     

and we easy know the fact: ( , )u v U V   , 

                      ( , ) ( ) ( ) ( ) ( )A B A B A Bu v u v u v         . (1.1.1) 

Now we use the following symbol to express the set of such mappings: 

 Ch( ) : [0,1]U U   , 

and define two binary algebraic operations ,   and one unitary algebraic 
operation “ c ” as follows: 

   
    

1 2 1 2 1 2

1 2 1 2

: Ch( ) Ch( ) Ch( )
, , ,

( ) ( ) ( )

U U U

u U u u u

     

   

  

  

    

  

   
    

1 2 1 2 1 2

1 2 1 2

: Ch( ) Ch( ) Ch( )
, , ,

( ) ( ) ( )

U U U

u U u u u

     

   

  

  

    

  

 
  

: Ch( ) Ch( )
,

( ) 1 ( )

c

c

c U U
c

u U u u
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It is easy to prove that this algebraic system  ( ), , ,U c   must be 
isomorphic with the algebraic system  Ch( ), , ,U c  , i.e.  

    ( ), , , Ch( ), , ,U c U c    .  (1.1.2) 

Thus we will regard Ch( )U  and ( )U  as the same thing.  
Now we prove (1.1.2). In fact, consider the following mapping: 

 

: ( ) Ch( )
      ( ) A

f U U
A f A 






 

For any , ( )A B U , if A B , then  

           u U u A u B u A u B                . 

Assume that    u A u B    is true, and then we have 

   ( ) 1 ( ) 0A Bu u    , 

thus A B  . This means that f is an injection. For any Ch( )U  , by 
it we can form a set ( )A U  as follows 

  ( ) 1A u U u   . 

Then by using A , we can get another Ch( )A U   as well, i.e. 

: {0,1}
1,     ,

( )
0,

A

A

U
u A

u u
u A








  


 

Now we can prove the fact that A  . In the matter of fact, for any an 
element u U , we have the following expression: 

 ( ) 1 ( ) 1A u u A u      . 

So we have the fact that A  , which means that ( ) Af A    , i.e. 
f  is a surjection. Therefore f  is a bijection.  

Now for any two sets , ( )A B U , we can easily have the following 
expressions: 

  ( ) , ( ) , c
c

A B A B A
f A B f A B f A        
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In fact, by noticing the following facts 

 
        
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ),
A B A Bf A B u u u u

f A u f B u f A f B u

    

   


 

 
        
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ),
A B A Bf A B u u u u

f A u f B u f A f B u

    

   


 

   

 

( ) ( ) 1 ( ) 1 ( ) ( )

( ) ( )

c
c

AA

c

f A u u u f A u

f A u

        

  

we know that f keeps algebra operations. This proves that (1.1.2) is true.   

1.2   Physical Significance for Cantor’s Sets 

In this section, we consider physical significance for Cantor’s sets with 
interest. For any a nonempty universe U , since it has nothing to do with 
time ,t U  can be regarded as a static system. For any an element u U , 
it is an element in U . However, if we put a “dress” on it, i.e. put { }A u , 
it becomes a set { } ( )A u U  . So we get its characteristic function as 
follows: 

 
{ }

1,     ,
( ) ( )

0,A u

x u
x x

x u
 


     

 

Fig. 1.2.1.  Unit impulse wave of u  
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For convenience, we take U   (the set of all real numbers). Then 
the graph of the characteristic function { }( )u x  is drawn as Figure 1.2.1. 

This clearly is a unit impulse wave corresponding to the set { }A u  
or the element u . We can regard this fact as wave-element duality. This 
reveals that every element in U must have its unit impulse wave, which 
is very important phenomenon. 

And then, for any nonempty set ( )A U , corresponding to it, we 
have its characteristic function A ; particularly, if we take the universe 
U   and [ , ]A a b   , then the graph of the characteristic function 

( )A x  is drawn as Figure 1.2.2. 
 

 

Fig. 1.2.2.  Unit rectangle wave of [ , ]A a b  
 

This clearly is a unit rectangle wave corresponding to the set [ , ]A a b . 
As having known the fact that  

   ( ), , , Ch( ), , ,U c U c    , 

we have some reason to regard this fact as wave-set duality. This reveals 
that every set in ( )U must have its unit rectangle wave, which is also very 
important phenomenon.  

By taking notice the following fact: 

 { }
x A

A x


 ,  

  
we clearly know that a set in ( )U  must be made up of some elements  
in U . From a physical point of view, if we regard elements in U  as micro-
scopic particles, then any set in ( )U  can be regarded as a macroscopical 
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mass point; it is easy to imagine that the mass point is composed of a group 
of elements in U . We can prove the following fact: 

   { }( ) ( )A x
x A

u U u u 


 
   

 
 .                   (1.2.1) 

In the matter of fact, for any u U , we have that 

 

{ } { } { }
\{ }

( ) 1

( ) ( ) ( ) 1 0 1

A

x u x
x A x A u

u u A

u u u



  
 

   

     
. 

We want to know that this fact can give us what new idea. In fact,  
we all know that any object in real macroscopical physical world can be 
regarded as a mass point and the object must be made up of a lot of  
microscopic particles. If a macroscopical mass point movement is also of 
wave property, then its wave must be made up of the waves of the micro-
scopic particles based on (1.2.1). Unfortunately, in classical mechanics, 
there is no the idea that a macroscopical mass point movement is of wave 
property. 

1.3   Background of Fuzzy Sets 

We start this section from a kind of open loop system with one-input and 
one-output shown as Figure 1.3.1, where S  stands for a system, x  for 
input variable taking values in the universe [ , ]X a b    and y for  
output variable taking values in the universe [ , ]Y c d   . 

 

 

Fig. 1.3.1.  One-input one-output open loop system 
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If  S   is a complicated uncertainty system, then it is hard to model the 
system by mechanism modeling method. Thus we often use some exper-
iments to get a group of discrete data which usually describe the relation-
ship between input and output of the system. 

The data set is denoted by IOD, Input and Output Data, as the following 

   IOD , 0,1, ,i ix y i n X Y      

where “  ” means “be defined as”. And the input data and the out data 
are also respectively written by 

    0 00,1, , , 0,1, , ,i iX x i n Y y i n       

in which we can assume that 

 0 1 0 0
, min , maxn i ii n i n

a x x x b c y d y
   

         

Actually data set IOD can be viewed as a mapping: 

  0 0 0: , , 0,1, , .i i ig X Y x g x y i n      

From the view of systems, for every number {0,1, , }i n  ,  0 i ig x y  
is regarded as a response of the system to input ix . However the map-
ping 0g has no definition in 0 0\cX X X , which means that S  does not 
respond to any element in 0

cX . The mapping 0g  can be shown as Figure 
1.3.2. 

Now we expand the mapping 0 0 0:g X Y  as the following mapping: 

 
0

: , ( ) ( )
i

n

ix
i

g X Y x y g x x y


    

Now we expand the mapping 0 0 0:g X Y  as the following mapping: 

 
 

0

:

( ) ( )
i

n

ix
i

g X Y

x y g x x y
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Fig. 1.3.2.  Discrete response of the system by 
0 0 0:g X Y  

 
Now we expand the mapping 0 0 0:g X Y  as the following mapping: 

  
0

: , ( ) ( )
i

n

ix
i

g X Y x y g x x y


     

Although the mapping :g X Y  makes the system S  having response 
on every x X , i.e., 

 0

, ,
( )

0,
, 0,1, ,

i iy x x
g x

x X X
x X i n


   

   
  

if we notice that   0\ ( ) 0x X X g x   , we know the fact that the  
responses of S  in 0\X X  are almost useless.  

Then we consider a Problem: How to get a practical mapping
:f X Y  by using of the discrete mapping 0 0 0:g X Y  such that S

has useful response to every element in X  and satisfies the natural  
condition:  

       0{0,1, , } i ii n f x g x   .  
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Of course, as we all know, interpolation is one of methods for solving 
the problem, but this method is without system view and also without 
meanings of operations of sets, logic and inference.  

We will consider a new schedule to solve the problem by adequately 
using sets, logic and inference.  

We all know well that the data , , 0,1, ,i ix y i n   have their errors, 
thus we have the following expressions: 

 , , 0, 0, 0,1, ,i i i i i ix y i n           

Or we can write above expression as the following: 

    , , , , 0,1, ,i i i i i i i i i ix x x y y y i n             

This implies that our data is extended step by step as follows 

 
        

     
IOD , 0,1, , , 0,1, ,

, , , 0,1, ,

i i i i

i i i i i i i i

x y i n x y i n

x x y y i n   

   

     

 


  

By noticing the characteristic function of every error interval as follows 

  
 

 ,

1, , ,
( )

0, ,

0,1, ,

i i i i

i i i i
x x

i i i i

x x x
x

x X x x

i n

 

 


  

    
   

 

  

based on wave-element duality and wave-set duality, every unit impulse 
wave   ( )

ix x  has turned into an unit rectangle wave  , ( )
i i i ix x x   

shown as Figure 1.3.3. From unit impulse waves   ( )
ix x  to unit rectan-

gle waves  , ( )
i i i ix x x    , we actually gain more information quantity by 

using errors of the data. Now we calculate a kind of information quantity 
from  ,i i i ix x    as follows: 

 , ( ) 2 , 0,1, ,
i i i i

b

ix xa
x dx i n       .                      (1.3.1) 
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Fig. 1.3.3.  Unit rectangle waves  , ( )
i i i ix x x     

 
As shown in Figure 1.3.4, it is easy to learn that the system does not  
respond for the inputs in these interspaces. 

 

 

Fig. 1.3.4.  The system does not respond for the inputs in these interspaces 
 

 

 

Fig. 1.3.5.  Another type of waves ( )
iA x  of  “some sets iA ” 
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In order to solve this problem, our idea is that, under keeping the  
information quantity obtained by the definite integrals (1.3.1), we con-
sider another type of waves ( )

iA x  of  “some kind of sets iA ” as shown 
as Figure 1.3.5. In order to keep the condition as follows:  

  {0,1, , } ( ) 2
i

b

A ia
i n x dx    , 

if we take the following two numbers: 

 
1 1

,i i
i i

i i i ix x x x
 

 
 

 
 

  

then we can get the following wave functions: 

 

 
 

    

  
   

  
 

1

1
1

1 1

2
1

1
1

1

1

0,                                                    , ,

,                , ,

, , ,
( )

1 ,        
i

i

i i
i i i

i i i i i

i i i i i i
i i i

i i i
A

i i i i

i i i

x a x

x x
x x x

x x x x

x x x x
x x x

x x
x

x x x x
x x






  













 













 

  

    
 




  



 

 
    

 

1

1
1

1 1

1

     , ,

,               , ,

0,                                                    ,

i i i

i i
i i i

i i i i i

i

x x x

x x
x x x

x x x x

x x b













 












  

 

 
  

 

  (1.3.2) 

And then we have already kept the condition: 

   {0,1, , } ( ) 2
i

b

A ia
i n x dx    .  

It is easy to learn that the wave functions are of a property:  

  {0,1, , } ( ) [0,1]
iAi n X   , 
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where ( )

iA X is the image set of the universe X  under the mapping 
iA , 

which is quite different from  , ( ) {0,1}
i i i ix x X     , the image set of the 

universe X  under the mapping  ,i i i ix x    .  

Based on wave-set duality stated in the Section 1.2, we may guess or 
image a possible fact that the wave functions ( )

iA x should be corre-
sponding to a new type of sets that will be called “fuzzy sets”. In the next 
section, we will give its definition.  

1.4   Definition and Operations of Fuzzy Sets 

From above section, we have learned the fact that  

  {0,1, , } ( ) [0,1]
iAi n X   . 

So naturally we give the following definition. 

Definition 1.4.1  A fuzzy set A on a given universe U  is that, for  
any u U , there is one and only one corresponding real number 

( ) [0,1]A u   to u , where ( )A u  is called the grade of membership of 
u  belonging to A . This means that we get a mapping: 

 : [0,1], ( )A AU u u   ,  

and this mapping is called the membership function of A . The set of all 
fuzzy sets on U  is denoted by ( )U  which can be called fuzzy power 
set of U .                                                                                                     

We can illustrate fuzzy sets by using a graphing method similar to 
Venn diagrams. First, universe U  is taken to be a rectangle in a Euclidean 
plane. Then elements of U are regarded as line segments with unit  
length 1, and a fuzzy set A  is regarded as a “circular ring” or “oval” in 
the rectangle as well as Figure 1.1.1, which is shown as Figure 1.4.1, and 
the diagrammatic sketch of Figure 1.4.1 is called pan-Venn-diagram. 

From Figure 1.4.1, we easy to learn the fact that 

        1 2 3 41, 0, 0.3, 0.6A A A Au u u u       .  
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Fig. 1.4.1.  Pan-Venn-diagram on fuzzy sets 
 
Clearly ( ) ( )U U   where ( )U  is just the power set of  U . Just 

as Cantor’s sets can be completely described by characteristic functions, 
fuzzy sets can also be completely described by membership functions. If 
the range of A  admits only two values 0 and 1, that is, ( ) {0,1}A U  , 
then this membership function degenerates to a characteristic function, 
which means the result as the following: 

 ( ) 1AA u U u   . 

Therefore, Cantor’s sets are special cases of fuzzy sets. Clearly it is true 
that ( ) \ ( )U U    , and if ( ) \ ( )A U U  , then A is called a 
proper fuzzy set because     0 0 (0,1)Au U u   where (0,1) is an 
open interval. These ( ), 0,1, ,

iA x i n   , shown by (1.3.2), are proper 
fuzzy sets which are useful examples of fuzzy sets.  

Example 1.4.1  Zadeh has defined two fuzzy sets “young” and “old”, 
denoted by Y and O , respectively, on the universe [0,100]U   as the 
following: 

 2

1,                         [0,25],
1 , (25,100]( )

251
5

Y

u

uu
u




  

      

 



16 Fuzzy Systems to Quantum Mechanics 
 

2

0,                         [0,50],
1 , (50,100]( )

501
5

O

u

uu
u

 


  

      

 

  
Recalling algebraic system  Ch( ), , ,U c  , let 

 Meb( ) : [0,1]U U   , 

and define two binary algebraic operations ,   and one unitary algebraic 
operation “ c ” as follows 

 

   
    

   
    

 
  

1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2

: Meb( ) Meb( ) Meb( )
, , ,

( ) ( ) ( ) ;

: Meb( ) Meb( ) Meb( )
, , ,

( ) ( ) ( ) ;

: Meb( ) Meb( )
,

( ) 1 ( )

c

c

U U U

u U u u u

U U U

u U u u u

c U U
c

u U u u

     

   

     

   

  

 

  

  

    

  

  

    





   







  

Then we get an algebraic system  Meb( ), , ,U c  . It is very important 
idea to define two binary algebraic operations ,   and one unitary  
algebraic operation “ c ” on ( )U  such that 

    ( ), , , Meb( ), , ,U c U c    .  (1.4.1) 

It is important to indicate that the extension from the following: 



  Fuzzy Sets 17 
 

   ( ), , , Ch( ), , ,U c U c     

to Expression (1.4.1) should be called extension principle.  

In the matter of fact, for any two fuzzy sets , ( )A B U , we define 
basic fuzzy set operations such as inclusion, equality, union, intersection 
and complement as follows: 

 

  

      

  

  

  

( ) ( ) ;

( ) ( ) ;

( ) ( ) ( ) ;

( ) ( ) ( ) ;

( ) 1 ( )

A B

A B

C A B

C A B

c
C A

A B u U u u

A B A B B A u U u u

C A B u U u u u

C A B u U u u u

C A u U u u

 

 

  

  

 

    

        

     

     

     





 

In addition, let V another universe. For any ( )A U  and ( )B V , 
based on (1.1.1), we define the direct product ( )A B U V    of fuzzy 
sets A and B as follows 

   ( , ) ( , ) ( ) ( )A B A Bu v U V u v u v         (1.4.2) 

Remark 1.4.1 Based on (1.1.1), we also define ( )A B U V    as the 
follows: 

   ( , ) ( , ) ( ) ( )A B A Bu v U V u v u v         (1.4.3) 
  

Under above the operations on fuzzy sets just defined by us, it is easy 
to know the fact that 

    ( ), , , Meb( ), , ,U c U c    .  
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Because  ( ), , ,U c   and  Meb( ), , ,U c   are isomorphic, we  
need not differentiate ( )U  and Meb( )U , which should be regarded as 
wave-fuzzy-set duality.  

It is easy to prove that the union, intersection and complement opera-
tions of fuzzy sets have the following properties: for any , , ( )A B C U , 
we have the following operation laws: 

(1) Idempotency.   

 ,A A A A A A     

(2) Commutativity.  

 ,A B B A A B B A       

(3) Associativity. 

 
   
   

,A B C A B C

A B C A B C





   

   
  

(4) Absorption.  

    ,A B A A A B A A       

(5) Distributive law.  

 
     
     

,A B C A B A C

A B C A B A C





    

    
  

(6)  Bipolarity.  

 , , ,A U U A U A A A A           

(7) Reflexivity.  

  ccA A  
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(8) De Morgan’s Law. 

    ,c cc c c cA B A B A B A B       

Note that the complementary law of Cantor sets does not apply to 
fuzzy sets, that is, 

      ( ) \ ( ) c cA U U A A U A A          .  (1.4.4) 

As a matter of fact, for any ( ) \ ( )A U U  , since there exists 0u U  
such that  00 1A u  , we have 

 
           

     
0 0 0 0

0 0

1 1 1 0

1 0c c

A A A A

A A A A

u u u u

u u

   

 

      

   
 

  

So (1.4.1) is true because of     ( ) 1 ( ) 0U u u    . 

Example 1.4.2  Based on Example 1.4.1, we can get fuzzy sets “young 
or old”  Y O , “young and “not young”  cY  and old”  Y O  shown as 
the following: 

 

12

12

12

1,            0 25

25( ) 1 , 25 51
5

501 , 51 100
5

0,             0 25

( ) 251 1 , 25 100
5

c

Y O

Y

u

uu u

u u

u

u u u
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12

12

0,            0 50

50( ) 1 , 50 51
5

251 , 51 100
5

Y O

u

uu u

u u
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Chapter 2   

Fuzzy Relations 

2.1   Cantor’s Relations 

Again we consider   IOD , 0,1, ,i ix y i n    coming from the system 

S  shown as Figure 1.1.1. If we put      {0,1, , } ,i i ii n R x y     and 

0

n

i
i

R R


 , then R  makes input universe X  and output universe Y  to 

have some kind of relation. Unfortunately, this “relation” is discrete or 
incomplete. However, if we can find a curve through every binary point 
 ,i ix y , just like ( )y f x  in Figure 2.1.1, this new kind of relation 
should be complete. 

 

 

Fig. 2.1.1.  The curve as a relation 
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In a matter of fact, it is very hard to find a reasoning curve to meet the 
need for the system response. Our idea is that, first of all, every single-
point relation   ,i ix y  should be extended as a non-single-point rela-
tion iR  just like the one shown in Figure 2.1.2. Then the relation 

0

n

i
i

R R


  may be complete. 

 

 

Fig. 2.1.2.  Every single-point relation is extended as iR  
 

Though 
0

n

i
i

R R


  may be complete, the response of the system based 

on it will not be single value, which is shown as Figure 2.1.3. For exam-
ple, for input x , the system gives a set value to response B . But do not 
worry about this case, because we will have a very good method to han-
dle it by using centroid method coming from physics.  

Now we start to learn so called relations being with what kind of 
mathematical significance. LetU andV be two nonempty universes. Any 
one subset as the following: 

 ( , ) ,R U V u v u U v V      
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is called a binary relation betweenU andV , simply called a relation. In 
order to differ from fuzzy relation coming from next section, sometimes 
we call relations here to be Cantor’s relations. 
 

 

Fig. 2.1.3.  Set value response B  for input x  
 

For any ( , )u v U V  , if ( , )u v R , then u  and v  are called being are 
of relation R , denoted by uRv , or else, i.e. ( , )u v R , called being not of 
relation R , denoted by uRv , shown as Figure 2.1.4.  
 

 

Fig. 2.1.4.  Relation R betweenU andV  
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If one relation f U V   satisfies such condition 

   !u U v V u f v     

where “!” means “one and only one”, then this relation f actually defines 
a mapping as follows 

 : , ( )f U V u f u v  .  

This fact means that mappings or functions are special cases of relations. 
The image of this mapping, denoted by fG , is as follows 

  ( , ) ( )fG u v U V v f u f     .  

This means that the image fG  is just the relation f regarded as a map-

ping. For example, a function defined as 

:[0,2 ] [ 1,1], ( ) sinf x f x x     

just gives the following relation: 

 ( , ) [0,2 ] [ 1,1] sin [0,2 ] [ 1,1]f x y y x          

Let ,U V andW be three nonempty universes; and we take a relation 
P U V   and another relation Q V W  . By using P  and Q , we can 
get a new relation P Q U W   as follows 

       ( , ) ( , ) ( , )P Q u w U W v V u v P v w Q         

 

Fig. 2.1.5.  Interchange graph for P Q  
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This relation P Q  is called the composition (or composition relation)  
of P  and Q , which we can use an interchange graph as shown as Figure 
2.1.5 to express P Q . 

For composition relation P Q , we can prove the following result: 

    ( , ) ( , ) ( , ) ( , )P Q P Qv V
u w U W u w u v v w  


      .     (2.1.1) 

Proof.  For any ( , )u w U W  , we have 

 

      
      
  

 

( , ) 1 ( , )

( , ) ( , )

( , ) 1 ( , ) 1

( , ) ( , ) 1

( , ) ( , ) 1

P Q

P Q

P Q

P Qv V

u w u w U W

v V u v P v w Q

v V u v v w

v V u v v w

u v v w



 

 

 


   

     

     

    

   



  

So (2.1.1) is true.                                                                                        

Example 2.1.1  For three finite universes as follows 

      1 2 1 2 1 2, , , , , , , , , , ,n l mU u u u V v v v W w w w     ,  

we take two relations P U V  and Q V W  , where the two relation 
can be expressed by so-called Boolean matrixes as the following 

 

    

    

11 12 1

21 22 2

1 2

11 12 1

21 22 2

1 2

,

, ,

l

l
P i k ik n ln l

n n nl

m

m
Q k j lm l ml m

l l lm

p p p
p p p

P u v p

p p p

q q q
q q q

Q v w q

q q q
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11 12 1

21 22 2

1 2

, ,

, , , ,

1,2, , ; 1,2, , ; 1,2, ,

m

m
Q k j lm l ml m

l l lm

ik P i k lm Q k j

q q q
q q q

Q v w q

q q q

p u v q v w

i n k l j m



 



 
 
   
 
 
 

  




  


 

  

  

Based on (2.1.1), if we write R P Q  , then we have the following  
result: 

 

  

   

11 12 1

21 22 2

1 2

1

, ,

, , ,

1,2, , , 1,2, ,

m

m
R i j n m

n n nm

l

ij R i j ij ik kjk

r r r
r r r

P Q R u w

r r r

r u w r p q

i n j m









 
 
   
 
 
 

  

 





  





 

     

  

Example 2.1.2  In Example 2.1.1, when 4, 3, 5n k m   , we have 

      1 2 3 4 1 2 3 1 2 3 4 5, , , , , , , , , , ,U u u u u V v v v W w w w w w   .  

We take two relations P U V   and Q V W   as follows 

 

        
        

            

1 2 1 3 2 1 3 1

1 1 1 2 2 3 3 5

1 3 1 5 2 1 2 2 3 1 3 2

, , , , , , , ,

, , , , , , , ,

, , , , , , , , , , ,

P u v u v u v u v

Q v w v w v w v w

P Q u w u w u w u w u w u w







  

Then we can clearly draw a relation graph very like a neural network 
shown as Figure 2.1.6. 
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Fig. 2.1.6.  Relation graph like a neural network 
 
We can also use Boolean matrixes to express them as the following: 

 

     
     
     
     
         
         

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

4 1 4 2 4 3

1 1 1 2 1 3 1 4 1 5

2 1 2 2 2 3 2 4 2 5

, , , 0 1 1
, , , 1 0 0

,
, , , 1 0 0
, , , 0 0 0

, , , , ,
, , , , ,

P P P

P P P

P P P

P P P

Q Q Q Q Q

Q Q Q Q Q

Q

u v u v u v
u v u v u v

P
u v u v u v
u v u v u v

v w v w v w v w v w
Q v w v w v w v w v w

  
  
  
  

    
    


   
   
       
       



         3 1 3 2 3 3 3 4 3 5, , , , ,

1 1 0 0 0
  0 0 1 0 0 ,

0 0 0 0 1

0 1 1 0 0 1 0 1
1 1 0 0 0

1 0 0 1 1 0 0 0
0 0 1 0 0

1 0 0 1 1 0 0 0
0 0 0 0 1

0 0 0 0 0 0 0 0

Q Q Q Qv w v w v w v w v w

P Q
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2.2   Definition of Fuzzy Relations 

Based on the preparation from Section 2.1, we start to consider fuzzy 
relations. 

 
Definition 2.2.1  Let U and V  be two nonempty universes and make a 
new universe U V  by U  and V . Any one fuzzy set  R U V   is 
called a fuzzy relation between U  and V , where the membership func-
tion of the fuzzy relation R is as the following 

 : [0,1], ( , ) ( , )R RU V u v u v    .  

And ( , )R u v  is called relationship strength between u  and v . Espe-
cially, when U V , i.e., 

    2R U U U    ,  

R  is called a fuzzy relation on U .                  
 
Example 2.2.1  Let U V   , and define a fuzzy relation  2  , 

where “ ” means “far more greater than”, as follows 

 

2

1

2

: [0,1]
0,            

( , ) ( , ) 1001 ,
( )

x y

x y x y
x y

x y



 






  
    








  

It is easy to calculate the following situations: 

 

( , ) (1000,100) ( , ) 0.9999;
( , ) (20,10) ( , ) 0.5000;
( , ) (20,18) ( , ) 0.0385.

x y x y
x y x y
x y x y





  
  
  





    

For the situation about finite universes as the following:  
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   1 2 1 2, , , , , , ,n mU u u u V v v v   , 

a fuzzy relation  R U V  can be expressed by a fuzzy matrix as 
follows 

 
   , , ,

1,2, , , 1,2, , .
ij ij R i jn m

R r r u v

i n j m






 



 
  

Definition 2.2.2  Let ,U V and W be three nonempty universes. We  
take one fuzzy relation  P U V  and another fuzzy relation 

 Q V W  . By using P  and Q , we can get a new fuzzy relation 
between U  and W  as being  R P Q U W    , and it is called the 
composition (or composition fuzzy relation) of P  and Q , where its 
membership function is defined based on Extension Principle coming 
from Section 1.4 as follows, for any ( , )u w U W  ,  

 ( , ) ( , ) ( , ) ( , )R P Q P Qv V
u w u w u v v w   


               (2.2.1) 

  
Remark 2.2.1  When U V W  , for any  2R U , we have  

 2 2R R R U   , 

then we have  3 2 2R R R U   , and so on, we have  

  1 2 , 2,3,n nR R R U n        

 
Remark 2.2.2  For three finite universes as follows 

      1 2 1 2 1 2, , , , , , , , , , ,n l mU u u u V v v v W w w w     ,  

we take two fuzzy relations  P U V  and  Q V W  . Then 
,P Q  and R P Q   can be expressed by fuzzy matrixes as the following: 
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1

, , ,

, , , ,

, ,

1,2, , , 1,2, , , 1,2, ,

ik kj ijn l l m n m

ik P i k kj Q k j

l

ij R i j ik kjk

P p Q q R r

p u v q v w

r u w p q

i n j m k l

 



  



  

  

  

 



  

  

  

Example 2.2.2   Let      1 2 3 4 1 2 3 1 2, , , , , , , ,U u u u u V v v v W w w   , and 

 

0.3 0.7 0.2
0.1 0.9

1 0 0.4
( ), 0.9 0.1 ( )

0 0.5 1
0.6 0.4

0.6 0.7 0.8

P U V Q V W

 
  
         
    

 

  .  

Then we have the following result: 

 

0.3 0.7 0.2 0.7 0.3
0.1 0.9

1 0 0.4 0.4 0.9
0.9 0.1

0 0.5 1 0.6 0.4
0.6 0.4

0.6 0.7 0.8 0.7 0.6

R P Q

   
    
          
     

   

  .   

Remark 2.2.3  Because a fuzzy relation ( )R U V   is a fuzzy set  
on U V , the operations on fuzzy sets are also valid for fuzzy relations. 
For example, for any two fuzzy relations , ( )P R U V  , we have the 
results: 

 

  
  

  
  

  

, ( , ) ( , ) ,
, ( , ) ( , )

, ( , ) ( , ) ( , ) ,

, ( , ) ( , ) ( , ) ,

, ( , ) 1 ( , ) .

P R

P R

Q P R

Q P R

c
Q R

P R u v U V u v u v

P R u v U V u v u v

Q P R u v U V u v u v u v

Q P R u v U V u v u v u v

Q R u v U V u v u v
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2.3   Projections and Cross-section’ Projections of Relations 

In order to make a fuzzy system, it is necessary to know some knowledge 
projections and cross-section’ projections of relations and fuzzy rela-
tions. But we start it from Cantor’s relations. 

Definition 2.3.1  Let X  and Y  be two nonempty universes and the set 
R X Y   is a relation between X  and Y . By using the following  
symbols: 

 
   
   

( , ) ,

( , )

X

Y

R x X y Y x y R

R y Y x X x y R

    

    
  

we call XR  and YR  to be projection of R  on X  and on Y , respectively; 
they are shown as Figure 2.3.1. 
 

 

Fig. 2.3.1.  Projections XR and YR of relation R on X and onY  

 
Clearly, we have XR X and YR Y .                     

Proposition 2.3.1  Let X  and Y  be two nonempty universes and take a 
relation between X  and Y  as R X Y  . We have the following results: 

 
  
  

( ) ( , ) ,

( ) ( , ) .

X

Y

R Ry Y

R Rx X

x X x x y

y Y y x y
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Proof.  For any a point x X , it is not difficult to understand the fact 
that 

 
  

  
( ) 1 ( , )

( , ) 1 ( , ) 1
XR X

R Ry Y

x x R y Y x y R

y Y x y x y



 


      

      
  

So the first expression is true. Similarly, the second is also true.              

Definition 2.3.2  Let X  and Y  be two nonempty universes and 
R X Y   is a relation between X and Y . For any x X  and any 
y Y , by using the following symbols: 

    ( , ) , ( , )
x y

R y Y x y R R x X x y R        

we call 
x

R  and y
R  to be cross-section’ projection of R  at x  and at y , 

respectively, where
x

R is shown as Figure 2.3.2 and the situation about 

y
R  is quite similar as 

x
R .                                                                    

 

 

Fig. 2.3.2.  Cross-section’ projections
x

R of relation R at x  

 
Proposition 2.3.2  Let X  and Y  be two nonempty universes and take a 
relation between X  and Y as being R X Y  . We have the results: 

      ( ) ( , ) , ( ) ( , ) .
x y

R RR Ry Y y x y x X x x y           

Proof.   For any a point y Y , by noticing the fact as the following 
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 ( ) 1 ( , ) ( , ) 1,

x
RR x

y y R x y R x y          

we know that the first expression is true. Similarly the second expression 
is also true.                                                                                                      

Proposition 2.3.3 Let X  and Y  be two nonempty universes and take a 
relation between X  and Y  as being R X Y  . We have the following 
results: 

 ,X Yy x
y Y x X

R R R R
 

     

Proof.  For any y Y , by using of Proposition 2.3.1 and Proposition 
2.3.2, we have the following results: 

 ( ) ( , ) ( ) ( )
Y x x

x X

R R R Rx X x X
y x y y y   


 

      .  

Thus the second expression is true. Similarly the first is also true.            

Proposition 2.3.4  Let X  and Y  be two nonempty universes and take a 
relation between X  and Y as R X Y  . We have the following results: 

    { } , { }
x y

x X y Y

R x R R R y
 

       

Proof.   For any ( , )u v X Y  , by using Proposition 2.3.2, we have 

 

 

 
{ }{ }

{ } { }

( , ) ( , )

( ) ( ) ( ) ( )

1 ( ) ( ) ( , )

xx
x X

x u

u u

x Rx R x X

x uR Rx X

RR R

u v u v

u v u v

v v u v

 

   

  



 



 

    

   



 

So the first expression is true. Similarly, we can get the second expres-
sion as well.                                                                                              

Remark 2.3.1  From Figure 2.3.3, Proposition 2.3.4 is obvious, where 
cross-section of relation R at x is just  { } { }

x
x R x Y R    .                  
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Fig. 2.3.3.  Cross-section of relation R at x is just{ }
x

x R  

 
Proposition 2.3.5  Let X andY be two nonempty universes and take a 
relation between X  and Y as being R X Y  . We have the following 
results: 

 
    
    

{ } ,

{ }

x Y

y X

x X R x Y R

y Y R X y R

      

      




  

Proof.  For any ( , )x y X Y  , by using Proposition 2.3.1 and Proposi-
tion 2.3.2, we have 

 

   

 
 
 

{ }{ }

{ }

{ }

{ }

{ }

( ) ( , )

( , ) ( , )

( ) ( ) ( , )

( ) ( , )

( ) ( , ) ( )

Y

x

x Y Rx Y R u X

x Y Ru X

x Y Ru X

x Ru X

x R R

y u y

u y u y

u y u y

u u y

x x y y

 

 

  

 

  

   







 

  

   

  

  



 

So the first expression is true. Similarly, we can get the second expres-
sion as well.                                                                                                

Remark 2.3.2  From Figure 2.3.3, Proposition 2.3.5 is obvious as well.   



  Fuzzy Relations 35 
 
Proposition 2.3.6  Let X  and Y  be two nonempty universes and take 
two  relations ,P Q X Y  . If P Q , then we have the following  
results: 

      , , ,X X Y Y x x y y
P Q P Q x X P Q y Y P Q          

It is not necessary to prove them for they are obvious.                              

2.4   Projections and Cross-section’ Projections of Fuzzy Relations 

Based on the discussion in Section 2.3 and by using Extension Principle 
coming from Section 1.4, we can consider the same subjects on fuzzy 
relations. 

Definition 2.4.1  Let X  and Y  be two nonempty universes and take a 
fuzzy relation  R X Y  . A fuzzy set ( )XR X  is called projec-
tion of R  on X , if its membership function is defined by the following 
condition: 

   ( ) ( , )
XR Ry Y

x X x x y 


    .  

Another fuzzy set ( )YR Y  is called projection of R  on Y , if its 
membership function is defined by the following 

   ( ) ( , )
YR Rx X

y X y x y 


    .   

Definition 2.4.2  Let X  and Y  be two nonempty universes and take a 
fuzzy relation between X  and Y  as  R X Y  . For any x X , a 
fuzzy set ( )

x
R Y  is called cross-section’ projection of R  at x , if its 

membership function is defined by the following 

   ( ) ( , )
x

RRy Y y x y    .  
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For any a point y Y , another fuzzy set ( )

y
R X   is called cross-

section’ projection of R  at y , if its membership function is defined by 
the following 

   ( ) ( , )
y

RRx X x x y    .   

Proposition 2.4.1  Let X  and Y  be two nonempty universes and take a 
fuzzy relation  R X Y  . We have the following results: 

 ,X Yy x
y Y x X

R R R R
 

     

Proof.  For any a point x X , by using Definition 2.4.1 and Definition 
2.4.2, we have  

 ( ) ( , ) ( ) ( )
X y y

y Y

R R R Ry Y y Y
x x y x x   


 

      .  

Thus the first expression is true. Similarly the second is also true.            

Proposition 2.4.2  Let X  and Y  be two nonempty universes and take a 
fuzzy relation as being  R X Y  . We have the following results: 

    { } , { }
x y

x X y Y

R x R R R y
 

       

Proof.   For any ( , )u v X Y  , by using Definition 2.4.2, we have 

 

 

 
{ }{ }

{ } { }

( , ) ( , )

( ) ( ) ( ) ( )

1 ( ) ( ) ( , )

xx
x X

x u

u u

x Rx R x X

x uR Rx X

RR R

u v u v

u v u v

v v u v

 

   

  



 



 

    

   



  

So the first expression is true. Similarly, we can get the second expres-
sion as well.                                                                                               
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Proposition 2.4.3  Let X  and Y  be two nonempty universes and take a 
fuzzy relation as being  R X Y  . We have the following results: 

 
    
    

{ } ,

{ }

x Y

y X

x X R x Y R

y Y R X y R

      

      




  

Proof.  For any ( , )x y X Y  , by using Definition 2.4.1 and Definition 
2.4.2, we have 

    { }{ } ( ) ( , )
Y

x Y Rx Y R u X
y u y     
     

 

 
 
 

{ }

{ }

{ }

{ }

( , ) ( , )

( ) ( ) ( , )

( ) ( , )

( ) ( , ) ( , )
( )

x

x Y Ru X

x Y Ru X

x Ru X

x R R

R

u y u y

u y u y

u u y

x x y x y
y

 

  

 

  









  

   

  

  



  

So the first expression is true. Similarly, we can get the second expres-
sion as well.                                                                                              

Proposition 2.4.4  Let X  and Y  be two nonempty universes and take 
two fuzzy relations  ,P Q X Y  . If P Q , then we have the fol-
lowing results: 

      , , ,X X Y Y x x y y
P Q P Q x X P Q y Y P Q          

It is not necessary to prove them for they are obvious.                              

Example 2.4.1 Let  1 2, , , nX x x x   and  1 2, , , mY y y y   be two 
finite universes and a fuzzy relation as being the following: 

      ,R i j ij n mn m
R x y r X Y


    , 
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where 

  , , 1,2, , , 1,2, ,ij R i jr x y i n j m    .  

We can calculate projections and cross-section’ projections of R  as  
follows: 

 

 

   

   
   
   

1

2
1 2

1 1

1 1

, , , , ,

, ,

, ,

, ,

, ,

1,2, , , 1,2, ,

X

Y

xi

y j

X Y m

n

m m

i R i R i j ijj j

n n

j R j R i j iji i

j R i jR

i R i jR

a
a

R R b b b

a

a x x y r

b y x y r

y x y

x x y

i n j m

 

 

 

 

 

 

 
 
  
 
 
 

    

    





 




 

  

  

Example 2.4.2  Let  1 2 3, ,X x x x  and  1 2 3 4, , ,Y y y y y  be two finite 
universes and we take a fuzzy relation as 

      ,R i j ij n mn m
R x y r X Y


   

 

as the following: 

     3 43 4

0.3 0.5 0.7 0.9
, 0.4 1 0.2 0.7

0.8 0.6 0.9 0
R i j ijR x y r



 
     
 
 

.  

We can calculate projections and cross-section’ projections of R  as the 
following: 
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1 2

3

1

1

2 1 2 3 4

3

0.9
1 , , , , 0.8,1,0.9,0.9 ,

0.9

, , 1,2,3, 1,2,3,4,

, , 1,2,3, 1,2,3,4,

0.3,0.5,0.7,0.9 , 0.4,1,0.2,0.7 ,

0.8,0.5,0.9,0 ,

0.3
0.4
0

xi

y j

X Y

j R i jR

i R i jR

x x

x

y

a
R a R b b b b

a

y x y i j

x x y i j

R R

R

R

 

 

   
         
   
   

  

  

 




2 3 4

0.5 0.7 0.9
, 0.1 , 0.2 , 0.7

.8 0.6 0.9 0
y y yR R R

       
                
       
            

2.5   Cantor’s Set Transformations 

Let X  and Y  be two nonempty universes. Any mapping as the following 

 : ( ) ( ), ( )T X Y A B T A     

is called a set transformation from X  to Y .  

Definition 2.5.1  Let X  and Y  be two nonempty universes and 
R X Y  . The following mapping 

 
: ( ) ( )

( ) ( )
Y

T X Y
A B T A A Y R



   
 

                     (2.5.1) 

is called a set transformation induced by relation R  from X  to Y , 
denoted by 

 ( )B T A A R   .  (2.5.2) 
   

In expression (2.5.1), the relation R  can be regarded as a transformer 
or a convertor from ( )X  to ( )Y , which is shown as Figure 2.5.1. 
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Fig. 2.5.1.  R  is regarded as a transformer from ( )X  to ( )Y  
 

Proposition 2.5.1  Let X  and Y  be two nonempty universes and take a 
relation R X Y  . About (2.5.1), for any a point y Y , we have 

  ( ) ( ) ( , )B A Rx X
y x x y  


   .  (2.5.3) 

Proof.   For any an element y Y , by using Proposition 2.3.1, we have 
the following equation: 

 

 

 
 
 

( ) ( )

( )

( ) ( ) ( )

( )

( , ) ( , )

( ) ( ) ( , )

( ) ( , )

Y
B T A A Y R

A Y Rx X

A Y Rx X

A Y Rx X

A Rx X

y y y

y

x y x y

x y x y

x x y

  



 

  

 











 

 

  

   

  





  

So (2.5.3) is true.                                                                                        
 
 

   

Fig. 2.5.2.   ( ) ( )
Y

A T A A Y R    
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Remark 2.5.1  In fact, it is easy to understand (2.5.3) by Figure 2.5.2. 
Besides, the mapping: 

 
: ( ) ( )

( ) ( )
Y

T X Y
A B T A A Y R



   
 

 

is obtained by the following three steps: 
(1) By use of A , we make the cylinder expansion A Y . 
(2) Get ( )A Y R   by intersection operation between A Y  and R . 
(3) We obtain  ( )

Y
A Y R   by the projection of ( )A Y R   on Y .   

Remark 2.5.2  For any x X , if we regard x as a single point set as to 
be { }A x , by (2.5.1), we can get another mapping 

  
: ( )

( ) ({ } )x Y

T X Y
x B T x x Y R



   


  (2.5.4) 

This is a point-set mapping. By using (2.5.3), for any y Y , we have 

 

 

 { }

{ }

( ) ( ) ( , )

( ) ( , )

( ) ( , ) ( , ) ( )

x

x

B A Ru X

x Ru X

x R R R

y u u y

u u y

x x y x y y

  

 

   





  

  

   

  

This means the following expression: 

   x x
x X B R    (2.5.5) 

  

Example 2.5.1 Let  1 2, , , nX x x x   and  1 2, , , mY y y y   be two 
finite universes and R X Y   and  A X , where  

    ,R i j ij n mn m
R x y r


  , 

and then we have the following results: 
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1

1

11 12 1

21 22 2
1 2 1 2

1 2

, ,

, , ,

,

1,2, , , 1,2, , ,

, , , , , ,

n

B j A i R i ji

i A i ij R i j

n

j B j i iji

m

m
m n

n n nm

y x x y

a x r x y

b y a r

i n j m
r r r
r r r

b b b a a a

r r r

  

 







  

 

   

 

 
 
 
 
 
 

 



  
  



  

  

2.6   Fuzzy Set Transformations 

Let X  and Y  be two nonempty universes. Any one mapping as the  
following 

 : ( ) ( ), ( )T X Y A B T A     

is called a fuzzy set transformation from X  to Y .  

Definition 2.6.1  Let X  and Y  be two nonempty universes and for any 
a fuzzy relation ( )R X Y  . The following mapping 

  
: ( ) ( )

( ) ( )
Y

T X Y
A B T A A Y R



   
 

  (2.6.1) 

is called a fuzzy set transformation induced by relation R from X  to 
Y , denoted by 

 ( )B T A A R   .  (2.6.2) 
  

In expression (2.6.1), the relation R  can also be regarded as a trans-
former or a convertor from ( )X  to ( )Y , which is shown as Figure 
2.5.1. 
 



  Fuzzy Relations 43 
 

 

Fig. 2.6.1.  R  is regarded as a transformer from ( )X  to ( )Y  
 

Proposition 2.6.1  Let X  and Y  be two nonempty universes and take 
one fuzzy relation ( )R X Y  . About (2.6.1), for any a point y Y , 
we have the following equation: 

  ( ) ( ) ( , )B A Rx X
y x x y  


   .  (2.6.3) 

Proof.  For any a point y Y , by using Definition 2.4.1, we have 

 

 

 
 
 

( ) ( )

( )

( ) ( ) ( )

( ) ( , ) ( , )

( ) ( ) ( , )

( ) ( , )

Y
B T A A Y R

A Y R A Y Rx X x X

A Y Rx X

A Rx X

y y y

y x y x y

x y x y

x x y

  

  

  

 



  





 

    

   

  




  

So (2.6.3) is true.                                                                                            

Remark 2.6.1  It is necessary to state that Remark 2.5.1 is also effective 
in the use.                                                                                                    

Remark 2.6.2  For any a point x X , if we regard x  as a single point 
set as to be { }A x , by (2.6.1), we can get another mapping: 

 : ( ), ( ) ({ } )x Y
T X Y x B T x x Y R              (2.6.4) 

This is a point-fuzzy-set mapping. By using (2.6.3), for any a point 
y Y , we have the following result: 

 

 

 { }

{ }

( ) ( ) ( , )

( ) ( , )

( ) ( , ) ( , ) ( )

x

x

B A Ru X

x Ru X

x R R R

y u u y

u u y

x x y x y y
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This means the following expression: 

   x xx X B R     (2.6.5) 

  

Example 2.6.1  Let  1 2, , , nX x x x   and  1 2, , , mY y y y   be two 
finite universes and ( ), ( )R X Y A X    , where  

    ,R i j ij n mn m
R x y r


  , 

and then we have the following results: 

 

      
       

   

1

1

11 12 1

21 22 2
1 2 1 2

1 2

, ,

, , , ,

1,2, , , 1,2, , ,

, , , , , ,

n

B j A i R i ji
n

i A i ij R i j j B j i iji

m

m
m n

n n nm

y x x y

a x r x y b y a r

i n j m
r r r
r r r

b b b a a a

r r r

  

  





  

     

 

 
 
 
 
 
 

 



  
  



  

  

Example 2.6.2  We now consider a fuzzy relation between height and 
weight for male young person. Let  40,50,60,70,80X  (kg) be weight 

universe and  1.4,1.5,1.6,1.7,1.8Y   (meter) be height universe. We 
have known the fuzzy relation between height and weight for male 
young person as follows: 

 

1 0.8 0.2 0.1 0
0.8 1 0.8 0.2 0.1

( )0.2 0.8 1 0.8 0.2
0.1 0.2 0.8 1 0.8
0 0.1 0.2 0.8 1

R X Y
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Let   be a “male young person” and he has an expression on X  as a 
fuzzy set as the following: 

  0.8,0.9,0.6,0.2,0 ( ).A X    

Then we can get an expression onY as the following fuzzy set: 

 
 

 

1 0.8 0.2 0.1 0
0.8 1 0.8 0.2 0.1

0.8,0.9,0.6,0.2,0 0.2 0.8 1 0.8 0.2
0.1 0.2 0.8 1 0.8
0 0.1 0.2 0.8 1

0.8,0.9,0.8,0.6,0.2 ( ).

B A R

Y

 
 
 
  
 
 
 
 

 

 



  

  

2.7 Ternary Relations and Their Projections and  
Cross-section’ Projections 

In order to make a fuzzy multi-input system, it is necessary to know 
some knowledge for projections and cross-section’ projections of  
Cantor’s ternary relations and fuzzy ternary relations. But we start it 
from Cantor’s ternary relations. 

Let ,X Y  and Z  be three nonempty universes. Any one subset of the 
set X Y Z   as the following: 

 ( , , ) , ,R X Y Z x y z x X y Y z Z        

is called a ternary relation among ,X Y  and Z . In order to differ from 
fuzzy ternary relation coming from next section, sometimes we call  
ternary relations here to be Cantor’s ternary relations. 

Definition 2.7.1 Let ,X Y  and Z  be three nonempty universes and 
R X Y Z    is a ternary relation among ,X Y  and Y . Let 

    ( , ) ( , , ) ,XR x X y z Y Z x y z R       



46 Fuzzy Systems to Quantum Mechanics 
 

   
   

( , ) ( , , ) ,

( , ) ( , , ) .

Y

Z

R y X x z X Z x y z R

R z Z x y X Y x y z R

     

     
 

We call ,X YR R  and ZR  projection of R  on ,X Y  and on Z , respectively. 
Clearly we have ,X YR X R Y  and ZR Z .                                       

Proposition 2.7.1 Let ,X Y  and Z  be three nonempty universes and 
R X Y Z   . We have 

 

  
  
  

( , )

( , )

( , )

( ) ( , , ) ,

( ) ( , , ) ,

( ) ( , , )

X

Y

Z

R Ry z Y Z

R Rx z X Z

R Rx y X Y

x X x x y z

y Y y x y z

z Z z x y z

 

 

 

 

 

 

   

   

   

  

Proof.  For any a point x X , it is not difficult to understand the follow-
ing equivalence expression: 

 
  
  

( , )

( ) 1

( , ) ( , , )
( , ) ( , ) 1

( , , ) 1

XR X

R

Ry z Y Z

x x R

y z Y Z x y z R

y z Y Z x y
x y z






 

  

    

    

  

  

So the first expression is true. Similarly the other two expressions are 
also true.                                                                                                     

Definition 2.7.2  Let ,X Y  and Z  be three nonempty universes and the 
set R X Y Z    is a ternary relation among ,X Y  and Y . For any 
x X , any y Y and any z Z , let 

 

 
 
 

( , ) ( , , ) ,

( , ) ( , , ) ,

( , ) ( , , ) .

x

y

z

R y z Y Z x y z R

R x z X Z x y z R

R x y X Y x y z R
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We call ,
x y

R R  and 
z

R  to be cross-section’ projection of R  at x , at y  
and at z , respectively. And for any ( , )x y X Y  , any ( , )y z Y Z   
and any ( , )x z X Z  , let 

 

 
 
 

( , )

( , )

( , )

( , , ) ,

( , , ) ,

( , , ) .

x y

y z

x z

R z Z x y z R

R x X x y z R

R y Y x y z R

  

  

  

  

We call ( , ) ( , ),
x y y z

R R  and ( , )x z
R  to be cross-section’ projection to R  at 

( , )x y , at ( , )y z  and at ( , )x z , respectively.                                               

Proposition 2.7.2  Let ,X Y  and Z  be three nonempty universes and we 
take R X Y Z   . We have the following results: 

 

  
  
  
  
  
  

( , )

( , )

( , )

( , ) ( , ) ( , , ) ,

( , ) ( , ) ( , , ) ,

( , ) ( , ) ( , , ) ;

( ) ( , , ) ,

( ) ( , , ) ,

( ) ( , , )

x

y

z

x y

y z

x z

RR

RR

RR

RR

RR

RR

y z Y Z y z x y z

x z X Z x z x y z

x y X Y x y x y z

z Z z x y z

x X x x y z

y Y y x y z

 

 

 

 

 

 

   

   

   

  

  

  

 

Proof.  For any ( , )y z Y Z  , by noticing the following expression: 

 ( , ) 1 ( , ) ( , , ) ( , , ) 1,
x

RR x
y z y z R x y z R x y z          

we know that the first expression is true. Similarly the other two expres-
sions are also true. 

And for any an element z Z , by noticing the following 

 
( , ) ( , )( ) 1 ( , , ) ( , , ) 1

x y
RR x y

z z R x y z R x y z          
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we know that the fourth expression is true. Similarly the other two  
expressions are also true.                                                                            

Proposition 2.7.3  Let ,X Y  and Z  be two nonempty universes and take 
R X Y Z   . We have 

 

( , )
( , )

( , )
( , )

( , )
( , )

,

,

X y z
y z Y Z

Y x z
x z X Z

Z x y
x y X Y

R R

R R

R R

 

 

 











  

Proof.  For any an element z Z , by using of Proposition 2.7.1 and 
Proposition 2.7.2, we have  the following result: 

 
( , ) ( , )

( , )
( , ) ( , )

( ) ( , , ) ( ) ( )
Z x y x y

x y X Y

R R R Rx y X Y x y X Y
z x y z z z   

 
   

      .  

Thus the third expression is true. Similarly the other two expressions are 
also true.                                                                                                     

Proposition 2.7.4  Let ,X Y  and Z  be three nonempty universes and 
take R X Y Z   . We have the following expressions: 

 

  
 

  
 
 

   

( , )
( , )

( , )
( , )

( , )
( , )

( , )
( , )

( , )
( , )

( , )

  { } { } ,

( , )

  { } { } ,

{ } { } ,

{ } , { }

x y
x y X Y

x y
x y X Y

y z
y z Y Z

y z
y z Y Z

x z
x z X Z

x z
x X z Z

R x y R

x y R

R R y z

R y z

R x R z

R x R R R z
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Proof.  For any ( , , )u v w X Y Z   , by using Proposition 2.7.2, we have 
the following equations: 

 

    

  
 

   

( , )( , )
( , )

( , )

( , ) ( , )

( , )( , ) ( , )

( , )( , )

( , )

{ }{ }{ }

{

( , , ) ( , , )

( , ) ( )

( , ) ( ) ( ) ( , , );

( , , ) ( , , ) ( ) ( , )

x yx y
x y X Y

x y

u v u v

x xx
x X

x y Rx y R x y X Y

x y Rx y X Y

Ru v R R

xx R Rx R x X x X

u v w u v w

u v w

u v w w u v w

u v w u v w u v w

 

 

   

   



 



  

 

  

 

  

   

    







}( ) ( , ) ( , ) ( , , )
u u

u RR Ru v w v w u v w    

  

So the first expression and the fourth expression are true. Similarly, we 
can know that the other expressions are also true.                                     

Proposition 2.7.5  Let ,X Y  and Z  be three nonempty universes and 
take  relation R X Y Z   . We have the following results: 

 

     
     
    

( , )

( , )

( , )

( , ) ( , ) ,

( , ) ( , ) ,

( , ) { } { }

x y Z

y z X

x z Y

x y X Y R x y Z R

y z Y Z R X y z R

x z X Z R x Y z R

      

      

        







 

Proof.  For any ( , , )x y z X Y Z   , by using Proposition 2.7.1 and 
Proposition 2.7.2, we have the following result: 

 

     

  
  
  

  ( , )

( , )( , ) ( , )

( , )( , )

( , )( , )

( , )( , )

( , )

( ) ( , , )

( , , ) ( , , )

( , ) ( ) ( , , )

( , ) 1 ( , , )

( , ) ( , , ) ( , , ) ( )

Z

x y

x y Z Rx y Z R u v X Y

Rx y Zu v X Y

Z Rx yu v X Y

Rx yu v X Y

R Rx y R

z u v z

u v z u v z

u v z u v z

u v u v z

x y x y z x y z z
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So the first expression is true. Similarly, we can get the other expressions 
as well.                                                                                                        

Proposition 2.7.6  Let ,X Y  and Z  be three nonempty universes and 
take two ternary relations ,P Q X Y Z   . If P Q , then we have the 
following results: 

 

  
  
  
  
  
  

( , ) ( , )

( , ) ( , )

( , ) ( , )

, , ,

,

,

,

( , ) ,

( , ) ,

( , )

X X Y Y Z Z

x x

y y

z z

x y x y

y z y z

x z x z

P Q P Q P Q

x X P Q

y Y P Q

z Y P Q

x y X Y P Q

y z Y Z P Q

x z X Z P Q

  

  

  

  

   

   

   

  

It is not necessary to prove them for they are obvious.                

2.8 Fuzzy Ternary Relations and Its Projections and  
Cross- section’ Projections 

Let ,X Y  and Z  be three nonempty universes. Any one fuzzy set as being 
 R X Y Z    is called a fuzzy ternary relation among ,X Y  and Z .  

Definition 2.8.1 Let ,X Y  and Z  be three nonempty universes and take 
one fuzzy ternary relation as being  R X Y Z    among ,X Y  and 
Y . Three fuzzy sets ( ), ( )X YR X R Y    and ( )ZR Z  are re-
spectively called to be projection of R  on ,X Y  and Z , if their member-
ship functions are defined by the following 

 
  
  

( , )

( , )

( ) ( , , ) ,

( ) ( , , ) ,

X

Y

R Ry z Y Z

R Rx z X Z

x X x x y z

y Y y x y z
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  ( , )
( ) ( , , )

ZR Rx y X Y
z Z z x y z 

 
                                

Definition 2.8.2  Let ,X Y  and Z  be three nonempty universes and take 
a fuzzy ternary relation as being  R X Y Z    among ,X Y  and Y . 
For any x X , any y Y  and any z Z , three fuzzy sets as follows: 

( ), ( ), ( )
x y z

R Y Z R X Z R X Y         

are respectively called to be cross-section’ projection of R  at ,x y  and z , 
if their membership functions are defined by the following: 

 

  
  
  

( , ) ( , ) ( , , ) ,

( , ) ( , ) ( , , ) ,

( , ) ( , ) ( , , )

x

y

z

RR

RR

RR

y z Y Z y z x y z

y z X Z x z x y z

x y X Y x y x y z

 

 

 

   

   

   

  

And for any ( , )x y X Y  , any ( , )y z Y Z   and ( , )x z X Z  , three 
fuzzy sets ( , ) ( , )( ), ( )

x y y z
R Z R X    and ( , ) ( )

x z
R Y   are respec-

tively called to be cross-section’ projection of R  at ( , )x y , at ( , )y z  and 
at ( , )x z , if their membership functions are defined by the following: 

 

  
  
  

( , )

( , )

( , )

( ) ( , , ) ,

( ) ( , , ) ,

( ) ( , , )

x y

y z

x z

RR

RR

RR

z Z z x y z

x X x x y z

y Y y x y z

 

 

 

  

  

  

 

  
Proposition 2.8.1  Let ,X Y  and Z  be three nonempty universes and 
take a fuzzy ternary relation as being  R X Y Z   . We have the 
following results: 

 
( , ) ( , ) ( , )

( , ) ( , ) ( , )
, ,X Y Zy z x z x y

y z Y Z x z X Z x y X Y

R R R R R R
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Proof.  For any z Z , by using of Definition 2.8.1 and Definition 2.8.2, 
we have the following expression: 

 
( , ) ( , )

( , )
( , ) ( , )

( ) ( , , ) ( ) ( )
Z x y x y

x y X Y

R R R Rx y X Y x y X Y
z x y z z z   

 
   

      .  

Thus the third expression is true. Similarly the other two expressions are 
also true.                                                                                                     

Proposition 2.8.2 Let ,X Y  and Z  be three nonempty universes and 
take a fuzzy ternary relation as being  R X Y Z   . We have the 
following results: 
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x y R

R R y z

R y z

R x R z

R x R R R z

 

 

 

 

 

 

 

  

 

  

  

   











 

 

Proof.  For any ( , , )u v w X Y Z   , by using Definition 2.8.1 and Defi-
nition 2.8.2 and Proposition 2.8.1, we have the following results: 
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So the first expression and fourth expression are true. Similarly we can 
know that the second expression and fourth expression are also true.       

Proposition 2.8.3 Let ,X Y  and Z  be three nonempty universes and 
take a fuzzy ternary relation as being  R X Y Z   . We have the 
following results: 
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x y Z
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x z X Z R x Y z R

      

      

        







  

Proof.  For any ( , , )x y z X Y Z   , by using Proposition 2.8.1 and 
Proposition 2.8.2, we have the following results: 
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x y

x y Z Rx y Z R u v X Y

Rx y Zu v X Y

Z Rx yu v X Y

Rx yu v X Y

Rx y

R R

z u v z
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u v u v z
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x y z z

 

 

  

 

 

 

    

 

 

 

 

  

   

   

 

 



  

So the first expression is true. Similarly, we can get the other expressions 
as well.                                                                                                        
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Proposition 2.8.4  Let ,X Y  and Z  be three nonempty universes and 
take two fuzzy ternary relations ,P Q  X Y Z  . If P Q , then 
we have the following results:  

 

  
  
  
  
  
  

( , ) ( , )

( , ) ( , )

( , ) ( , )

, , ,

,

,

,

( , ) ,

( , ) ,

( , )

X X Y Y Z Z

x x

y y

z z

x y x y

y z y z

x z x z

P Q P Q P Q

x X P Q

y Y P Q

z Y P Q

x y X Y P Q

y z Y Z P Q

x z X Z P Q

  

  

  

  

   

   

   

 

It is not necessary to prove them for they are obvious.                              

2.9  Fuzzy Set Transformations Based on Fuzzy Ternary  
Fuzzy Relations 

First of all, we consider Cantor’s set transformations based on ternary 
relations.   

Definition 2.9.1  Let ,X Y  and Z  be three nonempty universes and take 
a  relation R X Y Z   . The following mapping 

  
: ( ) ( ) ( )

( , ) ( , ) ( )
Z

T X Y Z
A B C T A B A B Z R

 

       
  

  (2.9.1) 

is called a set transformation induced by ternary relation R  among 
,X  Y and Z , denoted by the following equation: 

 ( , ) ( )C T A B A B R    .  (2.9.2) 
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Proposition 2.9.1 Let ,X Y  and Z  be three nonempty universes and 
take a  relation R X Y Z   . About (2.9.1), for any z Z , we have 

  
( , )

( ) ( ) ( ) ( , , )C A B Rx y X Y
z x y x y z   

 
    .  (2.9.3) 

Proof.  For any z Z , by using Proposition 2.7.1, we have 
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( , , )
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( , ) ( ) ( , , )

( , ) ( , )

( ) ( ) ( , )

Z
C T A A Y R

A B Z Rx y X Y

A B Z Rx y X Y

A B Z Rx y X Y

A B Rx y X Y

A B Rx y X Y

z z z

x y z

x y z x y z

x y z x y z

x y x y

x y x y

  



 

  

 

  



  

  

 

 

 

 

 

    

   

  

   





 

So (2.9.3) is true.                                                                                        

Remark 2.9.1  The set transformation as the following: 

   ( , ) ( , ) ( )
Z

A B T A B A B Z R          

is obtained by the following three steps: 
Step 1.  By use of ( , )A B , we make the cylinder expansion ( )A B Z  . 
Step 2.  Get  ( )A B Z R    by intersection operation between the 

two relations ( )A B Z   and R . 
Step 3.  We obtain the set what we want as being  ( )

Z
A B Z R     , 

by the projection of   ( )A B Z R    on Z .                                            

Remark 2.9.2  For any one point ( , )x y X Y  , if we regard ,x y  as 
two single point sets by (2.9.1) as following: 

{ } , { }A x X B y Y    , 

we can get another mapping as follows: 
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   ( , )

: ( )

( , ) ( , ) { } { }x y Z

T X Y Z

x y C T x y x y Z R

 

      


  (2.9.4) 

This is a point-set mapping. By using (2.9.3), for any ( , )x y X Y  , we 
have the following equation: 
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( , )

{ } { }( , )

{ } { }

( ) ( ) ( ) ( , , )

( ) ( ) ( , , )

( ) ( ) ( , , ) ( , , )
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x y

x y

C A B Ru v X Y

x y Ru v X Y

x y R R

R

z u v u v z

u v u v z

x y x y z x y z
z

   

  

   



 

 

   

   

   



  

This means that  

   ( , ) ( , )( , ) ( , )x y x y
x y X Y C T x y R       (2.9.5) 

  

Now we turn to consider fuzzy set transformations based on fuzzy  
ternary relations. 

Definition 2.9.2 Let ,X Y  and Z  be three nonempty universes and 
( )R X Y Z   . The following mapping 

  
: ( ) ( ) ( )

( , ) ( , ) ( )
Z

T X Y Z
A B C T A B A B Z R

 

       
  

 (2.9.6) 

is called a fuzzy set transformation induced by fuzzy ternary relation 
R  among ,X Y  and Z , denoted by 

 ( , ) ( )C T A B A B R    .  (2.9.7) 
  

Proposition 2.9.2 Let ,X Y  and Z  be three nonempty universes and 
( )R X Y Z   . About (2.9.1), for any z Z , we have 

  
( , )

( ) ( ) ( ) ( , , )C A B Rx y X Y
z x y x y z   

 
    . (2.9.8) 
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Proof.  For any an element z Z , by using Definition 2.4.1, we can have 
the following equation: 
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(( ) )( , )

( )( , )

( , )
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( ) ( ) ( )

( , , )
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C T A A Y R

A B Z Rx y X Y
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So (2.9.8) is true.                                                                                        

Remark 2.9.3  The fuzzy set transformation as the following: 

  ( , ) ( , ) ( )
Z

A B T A B A B Z R          

is also obtained by the following three steps: 
Step 1.  By use of ( , )A B , we make the cylinder expansion 

( )A B Z  . 
Step 2.  Get  ( )A B Z R    by intersection operation between two 

fuzzy relations ( )A B Z   and R . 
Step 3.  We obtain the fuzzy set as being  ( )

Z
A B Z R      by the 

projection of  ( )A B Z R    on Z .                                                     

Remark 2.9.4 For any ( , )x y X Y  , if we regard ,x y as two single 
point sets by (2.9.6) as the following: 

{ } , { }A x X B y Y    , 

we can get another mapping 

   ( , )

: ( )

( , ) ( , ) { } { }x y Z

T X Y Z

x y C T x y x y Z R

 

      


  (2.9.9) 
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This is a point-fuzzy-set mapping. By (2.9.8), for any ( , )x y X Y  , we 
have the following expression: 

 

 

 
( , )

( , )

( , )

{ } { }( , )

{ } { }

( ) ( ) ( ) ( , , )

( ) ( ) ( , , )

( ) ( ) ( , , ) ( , , ) ( )

x y

x y

C A B Ru v X Y

x y Ru v X Y

x y R R R

z u v u v z

u v u v z

x y x y z x y z z

   

  

    

 

 

   

   

    

 

This means that  

   ( , ) ( , )
( , ) ( , )x y x y
x y X Y C T x y R       (2.9.10) 

   

2.10   On Zadeh’s Extension Principle 

Let X  and Y  be two nonempty universes and consider a mapping: 

: , ( )f X Y x y f x   

Zadeh’s extension principle describes such a principle which expresses 
how to extend the mapping :f X Y  to a following mapping: 

 : ( ) ( ), ( )f X Y A B f A      

 

 

Fig. 2.10.1.  The set transformation as (2.10.1) 
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First of all, we consider a special case about Zadeh’s extension princi-
ple that how to extend the mapping :f X Y  to such a following  
mapping: 

 : ( ) ( ), ( )f X Y A B f A      

We have known the fact that f X Y  , i.e., the mapping f  is regarded 
as a Cantor’s relation between X  and Y . Based on Definition 2.5.1, we 
can get a set transformation like the following form (see Figure 2.10.1): 

 
 

: ( ) ( )
( ) ( )

Y

f X Y
A B f A A Y f



  



 
 

  (2.10.1) 

And then by using Proposition 2.5.1, we have such a proposition: 

Proposition 2.10.1  About the set transformation as (2.10.1), we have 

 
( )

( ) ( ),B Ay f x
y x y Y 


   .  (2.10.2) 

Proof.  For any y Y , based on Proposition 2.5.1, we have the following 
result: 

 

 

 
  
 

 
 

 
  

 
 

 

( )( )

( )

( )

( )

( ) ( )

( ) ( ) ( )

( , )

( , ) ( , )

( ) ( ) ( , )

( ) ( , )

( ) ( , )

( ) , ( )

( ) 1 (

Y
B A Y ff A

A Y fx X

A Y fx X

A Y fx X

A fx X

A fx t X y f t

A fx t X y f t

A Ax t X y f t x t X y f t

y y y

x y

x y x y

x y x y

x x y

x x y

x x f x

x x

  



 

  

 

 

 

 











  

  

     

 

 

  

   

  

  

  

    

 



)

 

If we denote 
 ( )

( )Ax t X y f t
x

  
  as 

( )
( )Ay f x
x


 , we have the following 
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form: 

 
( )

( ) ( ),B Ay f x
y x y Y 


   .  

Thus (2.10.2) is true. See Figure 2.10.1.                                                    

Now we turn to consider how to extend the mapping :f X Y  to a 
following mapping: 

 : ( ) ( ), ( )f X Y A B f A      

Based on Definition 2.6.1, we can get a set transformation like the  
following form: 

 
: ( ) ( )

( ) ( )
Y

f X Y
A B f A A Y f







   
 

                 (2.10.3) 

And then by using Proposition 2.6.1, we have such a proposition as  
follows. 

Proposition 2.10.2  About the set transformation as (2.10.3), we have 

 
( )

( ) ( ),B Ay f x
y x y Y 


   .  (2.10.4) 

Proof.  For any y Y , based on Proposition 2.6.1, we have the following 
expression: 
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( )( )

( )

( )

( )

( ) ( )

( ) ( ) ( )

( , )

( , ) ( , )

( ) ( ) ( , )

( ) ( , )

( ) ( , )

( ) , ( )

( ) 1 (

Y
B A Y ff A

A Y fx X

A Y fx X

A Y fx X

A fx X

A fx t X y f t

A fx t X y f t

A Ax t X y f t x t X y f t

y y y

x y

x y x y

x y x y

x x y

x x y

x x f x

x x

  



 

  

 

 

 

 

 









  

  

     

 

 

  

   

  

  

  

    





)

 

If we denote 
 ( )

( )Ax t X y f t
x

  
  as 

( )
( )Ay f x
x


 , we have the following 

form: 

 
( )

( ) ( ),B Ay f x
y x y Y 


   .  

Thus (2.10.4) is true.                                                            

Remark 2.10.1  The Equation (2.10.4) is just Zadeh’s extension princi-
ple. Because Zadeh’s extension principle has not proved before, it is 
called extension principle. In fact, it is not a principle, but should be a 
proposition or theorem like Proposition 2.10.2 which can be proved 
based on the extension principle defined by (1.4.1) in Section 1.4.           

The Equation (2.10.4) is clearly the extension principle on unary func-
tions or functions of one variable. Of course, we should consider how to 
establish the extension principle on functions of many variables. 

Let ,X Y  and Z  be three nonempty universes and consider a mapping 
as follows: 

: , ( , ) ( , )f X Y Z x y z f x y    

We first extend the mapping :f X Y Z   to a following mapping: 
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 : ( ) ( ),    ( )f X Y Z R C f R       

Based on Definition 2.6.1, we can get a set transformation like the  
following form: 

 
 

: ( ) ( )
( ) ( )

Z

f X Y Z
R C f R R Z f





 

   
 

  (2.10.5) 

And then by using Proposition 2.6.1, we have such a proposition. 

Proposition 2.10.2  About the fuzzy set transformation as (2.10.5), we 
have 

 
( , )

( ) ( , ),C Rz f x y
z x y z Z 


   .  (2.10.6) 

Proof.  For any z Z , based on Proposition 2.6.1, by noticing the fact 
that f X Y Z   , we have the following expression: 

 

 
  
 

 
 

( )( )

( )( , )

( , )

( , )

( , )

( , ) ( , ) ( , )

( , ) (

( ) ( ) ( )

( , , )

( , , ) ( , , )

( , ) ( ) ( , , )

( , ) ( , , )

( , ) ( , , )

Z
C R Z ff R

R Z fx y X Y

R Z fx y X Y

R Z fx y X Y

R fx y X Y

R fx y u v X Y z f u v

x y u

z z z

x y z

x y z x y z

x y z x y z

x y x y z

x y x y z

  



 

  

 

 

 

 

 

 

 

   



 

 

  

   

  

  

 





 
  

 
 

 

, ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) , , ( , )

( , ) 1

( , )

R fv X Y z f u v

Rx y u v X Y z f u v

Rx y u v X Y z f u v

x y x y f x y

x y

x y

 





  

   

   



  

 

 

If we denote 
 ( , ) ( , ) ( , )

( , )Rx y u v X Y z f u v
x y

   
  as 

( , )
( , )Rz f x y
x y


 , we have the 

following form: 
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( , )
( ) ( , ),C Rz f x y
z x y z Z 


   .  

Thus (2.10.6) is true.                                                                                  

Then we extend the mapping :f X Y Z  to a following mapping: 

 : ( ) ( ) ( )
         ( , ) ( , )
f X Y Z

A B C f A B





 


     

In order to use Equation (2.10.5), take ( )R A B X Y    , and then 
we have a set transformation like the following form: 

 
 

: ( ) ( ) ( )
( , ) ( , ) ( )

Z

f X Y Z
A B C f A B A B Z f





 

       
  

  (2.10.6) 

Based on Proposition 2.10.2, for any z Z , we have the following fact: 

  
( , ) ( , )

( ) ( , ) ( ) ( )C R A Bz f x y z f x y
z x y x y   

 
     .       (2.10.7) 

Remark 2.10.2  For the fuzzy relation ( )R A B X Y    , for any 
( , )x y X Y  , we have known the fact that 

 ( , ) ( , ) ( ) ( )R A B A Bx y x y x y      . 

Hence, (2.10.6) can be also written by membership function as follows 

  
( , )

( ) ( ) ( ) ,C A Bz f x y
z x y z Z  


    . (2.10.8) 

  

At the last of this section, we consider another problem. Let X  and Y  
be two nonempty universes and consider a mapping: 

: , ( )f X Y x y f x   

We have known that Zadeh’s extension principle means that based on the 
mapping :f X Y , we can get the following mapping: 
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  ( )

: ( ) ( )
        ( ),

( ) ( )B Ay f x

f X Y
A B f A

y Y y x 











   


 

  

On the other hand, based on the mapping :f X Y , we should another 
mapping: 

 
 

 

1

1

: ( ) ( )

             ( )

f Y X

B A f B









 
  

In order to know what is the membership function of the fuzzy set as 
being  1 ( )f B

 , we also consider a special case that how to extend the 
mapping :f X Y  to such a following mapping: 

    1 1: ( ) ( ),    ( )f Y X B A f B  
 

    

In fact, it is well-known that    1 ( ) ( )f B x X f x B   


, and then we 

have the following expression: 

      1 ( )( )
( ) ( )x X f x Bf B

x X x x 
  

    
 

 .  

Proposition 2.10.3        ( ) ( ) ( )Bx X f x Bx X x f x      

Proof.  For any x X , we have the following equivalence expression:  

    
 

( ) ( ) 1 ( )

( ) ( ) 1
t X f t B

B

x x t X f t B

f x B f x




      

   
  

Therefor the proposition is true.                                                                 

By means of Proposition 2.10.3, based on the extension principle  
defined by (1.4.1) in Section 1.4, we have the following result:  
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      1 ( )
( ) ( )Bf B

x X x f x 

    
 

. (2.10.9) 
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Chapter 3  

Fuzzy Systems 

3.1   Structure of One-input One-output Fuzzy Systems 

We now return to consider fuzzy systems and begin with one-input one-
output open loop system shown as Figure 1.3.1. Suppose that we have 
got the input output data set IOD by using a kind of experiment to get the 
system response, as follows 

 

  

 
 
 

0 1

0

0 1

0 1

IOD , 0,1, , ,

,
[ , ] , , [ , ],

min , , , ,
max , , , .

i i

n

n

n

n

x y i n X Y

a x x x b
X a b x x Y c d

c y y y

d y y y

   

    

  













  

We can build a fuzzy system based on IOD through the following steps. 

Step 1.  First of all, IOD should be regarded as 

      IOD , 0,1, , ( ) ( )i ix y i n X Y       .  

In this step, we want to extend every single point set pair     ,i ix y to  

a fuzzy set pair  ,i iA B  where ( )iA X  and  ( )iB Y . We can 
denote it by “fuzzy input output data set” as the following 

   FIOD , 0,1, , ( ) ( )i iA B i n X Y      .  
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Case 1. Suppose  0 0 1, , , nY y y y  be with strict monotonicity, in a 
manner of speaking, strictly monotonic increasing as the following: 

 0 1 nc y y y d     ,  

for the situation of strictly monotonic decreasing, i.e.  

0 1 nd y y y c     , 

it is very similar to deal with it. For example, we may define every fuzzy 
set ( )iA X  as the following, which are shown as Figure 3.1.1. 

 

 

Fig. 3.1.1.  Fuzzy sets ( )iA X  

 

 

     

     
     

0

1 0 1 0 1

1 1 1

1 1 1

,    , ;
( )

0 ,                               otherwise,

,   , ;

( ) ,   , ;
0 otherwise;

               1,2, , 1,

( )

i

n

A

i i i i i

A i i i i i

A

x x x x x x x
x

x x x x x x x

x x x x x x x x

i n

x
x







  

  

    


   


   


 





，　　          

     1 1 1,   , ;
0,                 otherwise,

n n n n nx x x x x x     



 

Similarly, we can get every fuzzy set ( )iB y  as follows 
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0

1 0 1 0 1

1 1 1

1 1 1

, , ;
( )

0 ,                             otherwise,

,   , ;

( ) ,   , ;
0  otherwise;

                1,2, , 1,

( )

i

n

B

i i i i i

B i i i i i

n
B

y y y y y y y
y

y y y y y y y

y y y y y y y y

i n

y y
y







  

  

    


   


   


 






，　　          

     1 1 1,   , ;
0,                 otherwise,

n n n ny y y y y    



  

Case 2.  Suppose  0 0 1, , , nY y y y   be not with strict monotonicity. 
In this case, it is hard to build those fuzzy sets ( )iB y . For this case, 
we can make a permutation for the subscript set {0,1, , }n  as follows 

 
0 1

0 1

n

n
k k k


 

  
 




  

such that 

 
0 1 kk k kc y y y d     .  (3.1.1) 

It is well-known that this permutation is just a bijection as the following 

 
:{0,1, , } {0,1, , }

( ), 0,1, ,i

n n
i k i i n







 
  

  

In addition, it is not difficult to understand the fact that  

   0 10 0 1, , , , , ,
nn k k kY y y y y y y   . 

Here we also consider two situations as the following. 
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Situation 1.  The set  0 10 , , ,
nk k kY y y y   is with strict monotonicity 

as the following form: 

 
0 1 nk k kc y y y d     .  (3.1.2) 

So we easily obtain the following fuzzy sets: 

 

   

    
    

1 0 1 0 1

0

1 1 1

1 1 1

, , ;
( )

0 ,                                otherwise,

,   , ;

( ) ,   , ;

0      otherwise;

     

k

j j j j j

k j j j j jj

k k k k k
B

k k k k k

B k k k k k

y y y y y y y
y

y y y y y y y

y y y y y y y y





  

  

       


    
     




，　　          

    1 1 1

            1,2, , 1,

,   , ;
( )

0,                    otherwise,
n n n n n

kn

k k k k k
B

j n

y y y y y y y
y   

 

     




  

Situation 2.  The set  0 10 , , ,
nk k kY y y y   is not with strict mono-

tonicity like (3.1.2) but only with (3.1.1). Now for the subscript set as the 
following: 

 0 1
, , ,

nj j jK k k k  , 

we make an equivalence relation “  ” as the following: 

   , {0,1, , }
s ts t k ks t n k k y y     .  

Thus we get the quotient set of  “  ” as follows 

  ( ) 0,1, ,j
K n k j n     ,  
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where every jk   is the equivalence class which the representative ele-

ment jk  locates in.  

Let different elements each other of  ( )K n
   be the following forms: 

0 1 ( )
, , ,

q nj j jk k k         , 

where 0 ( )q n n   and we stipulate that min
s sj jk k    . And then we 

can have the following result: 

 
0 1 ( )j j jq nk k kc y y y d     .  (3.1.3) 

By using the set  0 1 ( )
, , ,

j j jq nk k ky y y , we build some fuzzy sets as the 

following forms: 

 

   

    
    

1 0 1 0 1

0

1 1 1

1 1 1

, , ;
( )

0 ,                                   otherwise

,   , ;

( ) ,   , ;

0        

j j j j j

k j

j j j j js s s s s

k j j j j jj s s s s ss

k k k k k
B

k k k k k

B k k k k k

y y y y y y y
y

y y y y y y y

y y y y y y y y





  

  

       


   
    

,

，　　          

    ( ) 1 ( ) ( ) 1 ( ) 1 ( )

( )

otherwise;

                 1,2, , ( ) 1,

,   , ;
( )

0,                              otherwise
j j j j jq n q n q n q n q n

k jq n

k k k k k
B

s q n

y y y y y y y
y   








 

     




  

Now we stipulate that, for any 
sj

s k    , we take fuzzy set  

( ) ( )
jss kB y B y . 
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Thus, we get all fuzzy sets 

0 1
, , ,

nk k kB B B . So we got FIOD as follows: 

 
  
  

Case1: FIOD , 0,1, ,

Case2: FIOD , 0,1, ,
j j

i i

k k

A B i n

A B j n

 

 




  

Step 2.  Build a fuzzy relation ( )R X Y  . Firstly, we take 

 
  
  

Case1: {0,1, , }

Case2 : {0,1, , }
j j j

i i i

k k k

i n R A B

j n R A B

  

  

 

 
  

Then let 
0

n

i
i

R R


 (in case 1)  or 
0

j

n

k
j

R R


 (in case 2). Clearly for any 

( , )x y X Y   we can know that 

 
 

 

   
0

0

0

0

Case1: ( , ) ( , ) ( ) ( ) ,

Case2 : ( , ) ( , ) ( ) ( )

n i i
i i

i

n k kj j
k kj j

j

n

R A BiA B

n

R A BjA B

x y x y x y

x y x y x y

   

   









   

   





  

Step 3.  We form a fuzzy set transformation by Definition 2.6.1 as the 
following: 

 
 

 

 

 

 

( ) ( )

0

0

: ( ) ( )
( ) ( ) ,

( ) ( ) ( )

( ) ( , ) , ,

( ) ( ) ( ) ,       case1,

( ) ( ) ( ) , case 2

Y

i i

k kj j

Y

B T A A Y R

A Rx X

n

A A Bx X i

n
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T X Y
A B T A A Y R

y y y

x x y y Y

x x y

x x y
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Step 4.  Single point set input: for any x X , let { }A x , and we 
have the following expression: 

 

 

 

 

 

 

( ) ( )

{ }

0

0

( ) ( ) ( )

( ) ( , )

( ) ( , )

( , )

( ) ( ) ,       case1,
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n

A Bi
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A Bj

y y y

u x y

u x y

x y

x y

x y

  

 

 



 

 











 

  

  



 
 
  




  

Step 5.  Defuzzification: by using centroid method coming from phys-
ics, for any y Y , we have 

 

 

 

 
 

0

0

0

0

( ) ( )( )
case1: ,

( ) ( ) ( )

( ) ( )( )
case 2 :

( ) ( ) ( )

i i

i i
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k kj j
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A Bc iBc

d nd
B A Bc c i
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A Bc jBc

d nd
B A Bc c j

y x y dyy y dy
y

y dy x y dy

y x y dyy y dy
y

y dy x y dy

 

  

 

  









     
    

     
    


 


 

  

 This means that we have gotten the mapping of representing the response 
for the system as the following: 

 
( )

: , ( )
( )

d

Bc
d

Bc

y y dy
s X Y x y s x

y dy




   


   

Because  ( ) { }B T A T x  , we had better denote  ( ) { }B T A T x   as 
the following: 
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  ( ) { }xB B T A T x  .  

So we have 

 

   

 

 

 

{ } { }

{ }

0

0

( ) ( ) ( )

( ) ( , ) ( , )

( ) ( ) ,       case1,

( ) ( ) , case 2
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And then  

 
( )

: , ( )
( )

x

x

d

Bc
d

Bc

y y dy
s X Y x y s x

y dy




   


   (3.1.4) 

This mapping should be called a fuzzy system.  

Step 6.  Simplification of (3.1.4). For avoiding the computing of  
the two integrals in (3.1.4), we use definition of definite integral to deal 
with it.  

Case 1. Suppose  0 0 1, , , nY y y y  be with strict monotonicity, in a 
manner of speaking, strictly monotonic increasing as the following 

 0 1 nc y y y d     ,  

for the situation of strictly monotonic decreasing, i.e.  

0 1 nd y y y c     , 

it is very similar to deal with it. If that 

0 1: nc y y y d       

is regarded as a partition of interval[ , ]c d , then we have 
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From this we obtain the following approximation form: 
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Now we put that 

 

  
  

0

01

( )
( ) ,

( )

1,2, ,

i i

i i

n

A B j ji

j n n

A B k kik

x y y
x

x y y

j n

 


 






     
     








 (3.1.5) 

Then we have the following result: 
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1

( ) ( )
n

j j
j

y s x x y


  .  (3.1.6) 

If let 
1

( ) ( ) ,
n

j j
j

h x x y x X


 , then function 
1

( ) ( )
n

j j
j

h x x y


 is an 

kind of approximation to the mapping ( )y s x . 

Case 2.  Suppose  0 0 1, , , nY y y y   be not with strict monotonicity. 
In this case, by a permutation, we get (3.1.1), i.e., 

0 1 kk k kc y y y d     . 

We have known the following result: 

    { } 0
( ) ( ) ( ) ( )

x k kj j

n

B A BT x j
y y x y   


    .  

From this we also have the following approximation form: 

 

 

 

 
 

1

1

1

0

1
01

( )
( )

( )

( ) ( )
,

( ) ( )

, 1,2, ,

x
x

x x

k k jj j

k k jj j

j j j

n
d

j B j j
B jc

d n

B B k kc
k

n

A B kn j

jn n
j

A B kjk

k k k

y y yy y dy
y s x

y dy y y

x y y
y

x y y

y y y j n



 

 

 















  



        
        

  


 



 

  

Now we put that 

 

 
 

0

01

( ) ( )
( ) ,

( ) ( )

1,2, ,

k k jj j

k k jj j

n

A B kj

j n n

A B kjk

x y y
x

x y y

j n

 


 






     
     








 (3.1.7) 
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Then we have the same expression:  

 
1

( ) ( )
n

j j
j

y s x x y


  .  

And then, by noticing the following fact: 

 
   

   

1,     ,
case1: , {0,1, , } ,

0,

1,     ,
case 2 : , {0,1, , }

0,

i

k ji

B j ij

B k ij

i j
i j n y

i j

i j
i j n y

i j

 

 

 
      

 
      





  

We can turn (3.1.5) and (3.1.7) into the following: 

 
1

1

( )
, case1,

( )
( )

( )
, case 2,

( )

1,2, ,

j

k

k jj

k ii

A j
n

A k
k

j
A k

n

A k
i

x y

x y
x

x y

x y

j n
















 
  

 









  (3.1.8) 

Remark 3.1.1  The fuzzy input output data set as the following 

  FIOD , 0,1, ,i iA B i n  
 

can be regarded as a group of fuzzy inference rules: 

 

0 0

1 1

If is then is
If is then is

If is then isn n

x A y B
x A y B

x A y B









  (3.1.9) 
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3.2   Structure of Two-Input One-Output Fuzzy Systems 

Now we consider an open loop uncertain system with two-input one-
output shown as Figure 3.2.1. 

 

 

Fig. 3.2.1.  An open loop system with two-input one-output 
 

First of all, we make the partitions of the two input universes 
[ , ]X a b  and [ , ]Y c d  as the following: 

 0 1

0 1

,n

m

a x x x b
c y y y d
    

    




  

So we obtain an input data set 

     0 , 0,1, , , 0,1, ,i jX Y x y i n j m     .  

Very similar to the case for one-input one-output, we can get the  
response set of the system S for the input data set  0X Y  as follows 

  0 0,1, , , 0,1, ,ijZ z i n j m    .  

If we put 0 0min , maxZ Z   , then we get the output universe as  
being [ , ]Z   . So we have built a two-input one-output data set IOD: 

    IOD , , 0,1, , , 0,1, ,i j ijx y z i n j m    .  

Now we are going to turn IOD into FIOD: 

    FIOD , , 0,1, , , 0,1, , ,i j ijA B C i n j m     
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( ), ( ), ( ),
0,1, , , 0,1, ,

i j ijA X B Y C Z
i n j m
  

  
  

 

First we can easily to get ,i jA B as the following 

 

     

     
     

0

1 0 1 0 1

1 1 1

1 1 1

,    , ;
( )

0 ,                               otherwise

,   , ;

( ) ,   , ;
0 otherwise;

               1,2, , 1,

( )

i

n

A

i i i i i

A i i i i i

A

x x x x x x x
x

x x x x x x x

x x x x x x x x

i n

x
x







  

  

    

   


   


 





,

，　　          

     

     

    
    

0

1 1 1

1 0 1 0 1

1 1 1

1 1 1

,   , ;
0,                 otherwise,

, , ;
( )

0 ,                             otherwise

,   , ;

( ) ,   , ;

0
j

n n n n n

B

j j j j j

B i i i j j

x x x x x x

y y y y y y y
y

y y y y y y y

y y y y y y y y





  

  

  

   



    


   
    

,

，　　   

     1 1 1

 otherwise;

                1,2, , 1,
,   , ;

( )
0,                 otherwise,m

m m m m m
B

i m

y y y y y y y
y   






 

    




       

   

In order to build fuzzy sets ijC , we need to change binary subscripts 

( , )i j  into unitary subscripts written by  0,1, ,( 1) ( 1) 1k k n m      
which satisfy the following condition: 

 0 1 2 ( 1) ( 1) 1n mz z z z          . (3.2.1) 

We can get (3.2.1) by the following steps. 
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Step 1.  Make a mapping: 

 
     : 0,1, , 0,1, , 0,1, ,( 1) ( 1) 1

      ( , ) ( , ) ( 1)
g n m n m

i j g i j i m j

     

  

  

 
   (3.2.2) 

Denote iju z  , and we have the following expression: 

 
 
 

0,1,2, ,( 1) ( 1) 1

0,1, , , 0,1, ,ij

u n m

z i n j m

      

  



 
.  

In a general way, the set  0,1,2, ,( 1) ( 1) 1u n m       does not 
meet monotonicity on as follows 

 0 1 ( 1) ( 1) 1n mu u u       .  

Step 2.  Make a permutation: 

  
0 1 ( 1) ( 1) 1
(0) (1) ( 1) ( 1) 1

n m
n m


  

    
      




  

such that  

 0 1 ( 1) ( 1) 1n mu u u       .  

Denote  ( ) 0,1, ,( 1) ( 1) 1k kz u k n m       and we have 

 0 1 ( 1) ( 1) 1n mz z z       .  

This is just (3.2.1). We turn to build fuzzy sets on Z . 
Now we turn to build fuzzy sets as follows: 

( ), 0,1, ,( 1) ( 1) 1kC Z k n m      . 

Situation 1.  The set  0 0 1 ( 1) ( 1) 1, , , n mZ z z z       is with strict mono-

tonicity as the following: 
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 0 1 ( 1) ( 1) 1n mz z z         .  (3.2.3) 

So we can easily obtain the following fuzzy sets: 

     

     
     

0

1 0 1 0 1

1 1 1

1 1 1

,    , ;
( )

0 ,                               otherwise

,   , ;

( ) ,   , ;
0 otherwise;

               1,2, , ( 1) ( 1)

k

C

k k k k k

C k k k k k

z z z z z z z
z

z z z z z z z

z z z z z z z z

k n m




  

  

    

   


   


    

,

，　　          

( 1)( 1) 1

( 1) ( 1) 2
( 1) ( 1) 2 ( 1) ( 1) 1

( 1) ( 1) 1 ( 1) ( 1) 2

2,
( )

,   , ;

0,                       otherwise,

n mC

n m
n m n m

n m n m

z

z z
z z z

z z


  

   
       

       




   




    (3.2.4) 

Situation 2.  The set  0 0 1 ( 1) ( 1) 1, , , n mZ z z z       is not with strict 

monotonicity like (3.2.3) but only with (3.2.1). Now for the subscript set 

 0,1, ,( 1) ( 1) 1K n m     , 

we make an equivalence relation “  ” as the following 

    , 0,1, , ( 1) ( 1) 1 s ts t n m s t z z         . 

Thus we get the quotient set of “  ” as follows 

  ( ) 0,1, ,( 1) ( 1) 1j
K n k j n m         ,  

where every jk    is the equivalence class which the representative ele-

ment jk  locates in. Let different elements each other of ( )K n
  be the 

following: 
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0 1 ( , )
, , ,

q n mj j jk k k          

where 0 ( , ) ( 1) ( 1) 1q n m n m      , and we stipulate that 

 min
s sj jk k    . 

And then we have the following result: 

 
0 1 ( , )j j jq n mk k kz z z      .  (3.2.5) 

By using the set  0 1 ( , )
, , ,

j j jq n mk k kz z z , we build some fuzzy sets as the 

following 

 

   

    
    

1 0 1 0 1

0

1 1 1

1 1 1

, , ;
( )

0 ,                                otherwise

,   , ;

( ) ,   , ;

0     otherw

j j j j j

k j

j j j j js s s s s

k j j j j jj s s s s ss

k k k k k
C

k k k k k

C k k k k k

z z z z z z z
z

z z z z z z z

z z z z z z z z





  

  

       


   
    

,

，　　          

( , ) 1

( , ) 1 ( , )

( , ) ( , ) 1( , )

ise;

                 1,2, , ( , ) 1,

,   , ;
( )

0,          otherwise

jq n m

j jq n m q n m
j jk q n m q n mjq n m

k

k k
k kC

s q n m
z z

y z z
z zz














 


  






  (3.2.6) 

Now we stipulate that, for any 
sj

s k    , we take fuzzy set  

( ) ( )
jss kC z C z . 

Thus, we get all fuzzy sets 
0 1 ( 1) ( 1) 1
, , ,

n mk k kC C C
   

 .  

It is easy prove that the mapping: 

      : 0,1, , 0,1, , 0,1, ,( 1) ( 1) 1g n m n m          
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defined by (3.2.2) is a bijection. So we can rewrite the following single-
subscript fuzzy sets as follows: 

 , 0,1, , ( 1) ( 1) 1C n m         

as double-subscript fuzzy sets as follows: 

, 0,1, , , 0,1, ,ijC i n j m   . 

Based on above two situations, we have got FIOD as follows: 

 

   FIOD , , 0,1, , , 0,1, , ,

( ), ( ), ( ),
0,1, , , 0,1, ,

i j ij

i j ij

A B C i n j m

A X B Y C Z
i n j m

  

  

 

 

 
     

Similar to Remark 3.1.1, the fuzzy data set 

    FIOD , , 0,1, , , 0,1, ,i j ijA B C i n j m      

can be regarded as a group of fuzzy inference rules: 

 
If is and is then is ,

0,1, , , 0,1, ,
i j ijx A y B z C

i n j m



   
  (3.2.7) 

We can also rewrite (3.2.5) as the following 

  If ( , ) is , then is ,

0,1, , , 0,1, ,
i j ijx y A B z C

i n j m




   
  (3.2.8) 

Here we can use i jA B  to implement  ,i jA B , where i jA B  is the  

direct product between fuzzy sets iA  and jB . By using i jA B  and ijC , 

we can get a group of fuzzy relations between input universe X Y  and 
output universe Z  as follows: 

   ( ) ,ij i j ijR A B C X Y Z                       (3.2.9) 
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where 

   ( , , ) ( ) ( ) ( )

0,1, , , 0,1, ,
ij i j ijR A B Cx y z x y z

i n j m

     

  
  

Clearly  ij i j ij i j ijR A B C A B C       and we can have the equation: 

   ( )X Y Z X Y Z      . 

So ijR  are ternary fuzzy relations. By means of these ijR , we can easily 

obtain an entire ternary fuzzy relation as the following 

 
 

 
0 0

0 0

,

( , , ) ( ) ( ) ( )
i j ij

n m

ij
i j

n m

R A B Ci j

R R X Y Z

x y z x y z   

 

 

   

    

 
  (3.2.10) 

It is a main procedure to build the ternary fuzzy relation expressed by 
(3.2.10) for us to obtain our fuzzy systems with two-input and one-
output. Now based on (3.2.10), by using Definition 2.9.2, we can have a 
fuzzy set transformation induced by the fuzzy ternary relation R as the 
follows 

  
: ( ) ( ) ( )

( , ) ( , ) ( )
Z

T X Y Z
A B C T A B A B Z R

 

       
  

  

Considering (2.9.8), for any z Z , we have 

 

 
( , ) ( , )

( , ) 0 0

( ) ( ) ( ) ( ) ( , , )

( ) ( ) ( ) ( ) ( )
i j ij

C T A B A B Rx y X Y

n m

A B A B Cx y X Y i j

z z x y x y z

x y x y z

    

    

 

   

    

         
    

  (3.2.11) 

And then, by use of Remark 2.9.4, we get another mapping: 

   ( , )

: ( )

( , ) ( , ) { } { }x y Z

T X Y Z

x y C T x y x y Z R

 

      


 (3.2.12) 
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This is a point-fuzzy-set mapping. By using (3.2.10), for any an element 
( , )x y X Y   and for any an element z Z , we can have the following 
equation: 

 
 

( , ) ( , )

0 0

( ) ( ) ( , , )

( ) ( ) ( )

x y x y

i j ij

C RR

n m

A B Ci j

z z x y z

x y z

  

  
 

 

    
 (3.2.13) 

By using centroid method which we have already used in section 3.1, 
for any an element z Z , we have the expression: 

  
 

( , )

( , )

0 0

0 0

( )d

( )d

( ) ( ) ( ) d

( ) ( ) ( ) d

x y

x y

i j ij

i j ij

C

C

n m

A B Ci j

n m

A B Ci j

z z z
z

z z

z x y z z

x y z z




















  

  

 

 



      
      








 (3.2.14) 

This means that we have gotten the mapping of representing the response 
for the system as the following: 

 ( , )

( , )

:

( )
( , ) ( , )

( )
x y

x y

C

C

s X Y Z

z z dz
x y z s x y

z dz












 

  



 (3.2.15) 

The mapping expressed by (3.2.13) is just the fuzzy system with two-
input and one-output we want to build.  

At last, we consider the simplification of (3.2.13). For avoiding the 
computing of the two integrals in (3.2.13), we also use definition of defi-
nite integral to deal with it.  

For above Situation 1, because the set  0 0 1 ( 1) ( 1) 1, , , n mZ z z z      is 

with strict monotonicity, i.e., 

 0 1 ( 1) ( 1) 1n mz z z         ,  
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if that 0 1 ( 1) ( 1) 1: n mz z z           is regarded as a partition of 
interval [ , ]  , then we have the following expressions: 

 

 

 

 

 

( , ) ( , )

( , )

( , ) ( , )

( , )

( 1)( 1) 1

0 1
( 1)( 1) 1

1
( 1)( 1) 1

0 1
(

1

( ) lim

                        ,

( ) lim

                      

x y x y

x y

x y x y

x y

n m

C C

n m

C

n m

C C

n

C

z z dz z

z

z dz z

z



  


  




 


 


   

  

  

 

  

 


  



  

 






 

 

 

 







 

 

1)( 1) 1

1 1

1 ( 1)( 1) 1

,

, , ,
1,2, , ( 1)( 1) 1,

max

m

n m

z z z z z z
n m

z

       






 

 

    

    

   

 







 

From this we obtain the following approximation form: 

 

 

 

 

 

 

 

( , )
( , )

( , )
( , )

( , )
( , )

( , ) ( , )

( 1)( 1) 1

1
( 1)( 1) 1

1

( 1)( 1) 1

1
( 1)( 1) 1 ( 1)( 1) 1

1 1

( )
( , )

( )

x y
x y

x y
x y

x y
x y

x y x y

n m

C
C

n m

C C

n m

C
C

n m n m

C C p p
p

zz z dz
z s x y

z dz z

z z z z z

z z z z


  

 


  


  
 

 


  

  

 

 

  


  



  


     

 


  




 

 
 


 



 

( 1)( 1) 1

1

n m

z


  




 
 
 
 
 



  

Now we put the symbol as follows: 

 

 

 
( , )

( , )

( 1)( 1) 1

1

( , ) ,

1,2, ,( 1)( 1) 1

x y

x y

C
n m

C p p
p

z z
x y

z z

n m

 









  







   






  (3.2.16) 
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Then we have the following expression: 

 
( 1)( 1) 1

1
( , ) ( , )

n m

z s x y x y z 



  



   . (3.2.17) 

Based on (3.2.4), it is easy to know the following fact: 

      1,      ,
, 0,1, ,( 1)( 1) 1

0,pC q pq

p q
p q n m z

p q
 
 

         
   

So we can learn that, for any {0,1, , }i n   and for any {0,1, , }j m  , 
we have the following equation: 

  
( , )

( ) ( )
x y i jC ij A Bz x y     (3.2.18) 

And then by noticing (3.2.2), if we denote ijz z  , then we have the 

following result: 

 

 

 

 
 

( , )

( , )

( 1)( 1) 1

1

1 1

( , ) ( , )

( ) ( )
             ,

( ) ( )

1,2, , ; 1,2, ,

x y

x y

i j

i j

C
ij n m

C p p
p

A B ij

n m

A B ij
i j

z z
x y x y

z z

x y z

x y z

i n j m

 



 



 

 

  



 






 


 

 







 

 

 
By using (3.2.17), we have the following expression: 

  
 

( 1)( 1) 1

1 1 1

1 1

1 1

( , ) ( , ) = ( , )

( ) ( )
=

( ) ( )

i j

p q

n m n m

ij ij
i j

n m A B ij

ijn m
i j

A B pq
p q

z s x y x y z x y z

x y z
z

x y z

 


 

 

 

  

  

 

 

 

 
  
 
   
 

 




     (3.2.19) 
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Remark 3.2.1  For Situation 2, as we have got all fuzzy sets as follows: 

0 1 ( 1) ( 1) 1
, , ,

n mk k kC C C
   

 , 

it is easy to show that (3.2.19) is also true, but we should know that there 
are some 0ijz  .                                                                                      

Remark 3.2.2  Because the membership function of the direct product 
i jA B can be also defined as being ( , ) ( ) ( )

i j i jA B A Bx y x y     based 

on Remark 1.4.1, (3.2.14) and (3.2.19) can be written as the following 

 
 

( , )

( , )

0 0

0 0

( )

( )

( ) ( ) ( )

( ) ( ) ( )

x y

x y

i j ij

i j ij

C

C

n m

A B Ci j

n m

A B Ci j

z z dz
z

z dz

z x y z dz

x y z dz




















  

  

 

 



      
      








              (3.2.20) 

 
 
 1 1

1 1

( ) ( )
( , )

( ) ( )

i j

p q

n m A B ij

ijn m
i j

A B pq
p q

x y z
z s x y z

x y z

 

  

 

 
  
  
   
 




  (3.2.21) 

   

Remark 3.2.3  Let  0ij ijz z     and mean( )h   which means 

the mean value of the elements in set   . If we use h  to replace ijz , 

then it is not difficult to know the following results: 

 
 1 1

1 1

( ) ( )
( , )

( ) ( )

i j

p q

n m A B ij

ijn m
i j

A B pq
p q

x y z
z s x y z

x y z
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1 1

1 1

1 1

1 1

( ) ( )

( ) ( )

( ) ( )

( ) ( )

i j

p q

i j

p q

n m A B

ijn m
i j

A B
p q

n m
A B

ijn m
i j

A B
p q

x y h
z

x y h

x y
z

x y

 

 

 

 

 

 

 

 

 
 
 
  
 
 
 
 
  
 







                 (3.2.22) 

 1 1

1 1

( ) ( )
( , )

( ) ( )

i j

p q

n m A B
ijn m

i j
A B

p q

x y
z s x y z

x y

 

  

 

 
 
  
  
 




       (3.2.23) 

Based on the structure of fuzzy sets as being ,i jA B , it is not difficult 

to prove the following fact:  

 
1 1

( ) ( ) 1
p q

n m

A B
p q

x y 
 

  , 

and then we have a very simple expression of (3.2.23) as the following: 

  
1 1

( , ) ( ) ( )
i j

n m

A B ij
i j

z s x y x y z 
 

     (3.2.24) 

  

3.3   Interpolation Mechanism of Fuzzy Systems 

Based on the conclusions of above sections, we consider interpolation 
mechanism of fuzzy systems. From (3.1.6), we know that a fuzzy system 
can be approximately expressed by the following equation: 

1
( ) ( )

n

j j
j

y s x x y
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If the note set  1 2, , , ny y y  satisfies the following well-known interpo-
lation condition: 

    {1,2, , } i ii n s x y   , 

where  1 2, , , [ , ]nx x x a b  and 1 2 nx x x   , then above equation, 
i.e. (3.1.6), is just an interpolation about function ( ) [ , ]s x C a b . This is 
so-called interpolation mechanism of fuzzy systems. We know that these 
base functions ( )i x  are shown as (3.1.8) and they are linearly inde-
pendent in function space [ , ]C a b ; so they can generate a linear subspace 
with n  dimension of [ , ]C a b  as follows 

 1 2span ( ), ( ), , ( )nx x x   . 

It is easy to understand the following expression:  

 1 2
1

( ) span ( ), ( ), , ( )
n

j j n
j

x y x x x   


  . 

This means that a fuzzy system can be regarded as the fact that we use  
an element in  1 2span ( ), ( ), , ( )nx x x    to approximate the given el-
ement ( ) [ , ]s x C a b . If we define a norm: 

[ , ]

: [ , ] [0, )

max ( ) ,
x a b

C a b

f f f x


  

  

then  [ , ],C a b   is a linear normed space. Then we define a metric:  

: [ , ] [ , ] [0, )
( , ) ( , )
d C a b C a b

f g d f g f g
  

 
 

We can know that  [ , ],C a b d  is a complete metric space, i.e., it is a  
Banach space. This means that the research of fuzzy systems is essen-
tially an approximation problem in a kind of Banach space.  



90 Fuzzy Systems to Quantum Mechanics 
 

Furthermore, from (3.2.19), we know that a fuzzy system with two  
inputs one output can be approximately expressed by the following  
equation: 

 
 

( 1)( 1) 1

1

1 1

1 1

1 1

( , ) ( , )

= ( , )

( ) ( )
=

( ) ( )

i j

p q

n m

n m

ij ij
i j

n m A B ij

ijn m
i j

A B pq
p q

z s x y x y z

x y z

x y z
z

x y z

 






 

 

  



 

 

 

 

 
  
 
   
 








 

If the note set  1,2, , , 1,2, ,ijz i n j m    satisfies the following well-

known interpolation condition: 

 
 

1 2

1 2

, ,

, [ , ] [ , ],

( , ) {1,2, , } {1,2, , }
;
,

i j ij

i j

n

m

s x y z

x y a b c d

i j n m
x x x
y y y



 

 
  

  

 



 

then above equation, i.e. (3.2.19), is just an interpolation about the func-
tion of two variables  ( , ) [ , ] [ , ]s x y C a b c d  .  

In the same way, since the base functions ( , )ij x y  are linearly inde-
pendent, they can generate a linear subspace with n m  dimension of 
the infinite dimension function space  [ , ] [ , ]C a b c d  as follows: 

 span ( , ) 1,2, , , 1,2, ,ij x y i n j m    . 

It is easy to understand the following expression:  

 
1 1

( , ) span ( , ) 1,2, , , 1,2, ,
n m

ij ij ij
i j

x y z x y i n j m 
 

     . 
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This means that a fuzzy system with two inputs one output can be re-
garded as the fact that we use an element in  span ( , )ij x y  to approxi-

mate the given an element  ( , ) [ , ] [ , ]s x y C a b c d  . If we define a norm: 

 

( , ) [ , ] [ , ]

: [ , ] [ , ] [0, )

max ( , ) ,
x y a b c d

C a b c d

f f f x y
 

   

  

then   [ , ] [ , ] ,C a b c d   is also a linear normed space. Then we define 

a metric:  

   : [ , ] [ , ] [ , ] [ , ] [0, )

                ( , ) ( , )

C a b c d C a b c d

f g f g f g





    

 
 

We can know that   [ , ] [ , ] ,C a b c d   is a complete metric space, i.e., 

it is a Banach space. This means that the research of fuzzy systems with 
two input one output is also essentially an approximation problem in a 
kind of Banach space. 

Remark 3.3.1  Based on above discussion, we should form a viewpoint 
coming from mathematics: so-called fuzzy systems are essentially  
belonging to function approximation theory which is a very important 
aspect of applied mathematics.                                                                   
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Chapter 4  

Function Approximation Properties 
of Fuzzy Systems and Its Error 

Analysis 

4.1   Introduction 

Since fuzzy sets was proposed by L. A. Zadeh, fuzzy systems theory has 
been successfully used in many fields. In practical applications, based on 
a given approximation accuracy we can usually establish a fuzzy system 
to approximate a predetermined model or control process. Therefore,  
the research of function approximation property of fuzzy systems has 
become an important direction. The so-called function approximation of 
fuzzy systems means that we consider whether the fuzzy system can  
approximate any continuous function on a compact set in any degree of 
accuracy (by some sort of norm). From the mathematical view, a fuzzy 
system is regarded as a mapping from the input universe to the output 
universe; especially it is an interpolator. Literature [3] reveals the proba-
bility meaning of center of gravity method, and shows that the center of 
gravity method is reasonable. The function approximation properties of 
fuzzy systems constructed by the center of gravity defuzzification meth-
od are focused on in this paper, where the approximation error and the 
remainder expression are regarded as very important and interesting. At 
last, the remainder expressions of error upper bound estimate are proved.  

4.2   Structures of Fuzzy Systems 

We first consider a static open-loop system with one input one output, i.e. 
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SISO, shown as Figure 1.3.1. The value of input variable x  taking its 
values from input universe X  and the value of output variable y  taking 
its values from output universe Y . If the system S  is a deterministic 
system, we can use conventional methods to establish the mathematical 
model of the system (for example, using method of mechanism to estab-
lish differential equation model), and then the solution of the model is 
obtained by using analytical methods or numerical methods. So we have 
basically mastered the system (more depth problem is the qualitative 
problem of the system: controllability, observability, stability, etc.). Then, 
the system can be simply expressed as a function, denoted by s , that is 

: , ( )s X Y x y s x                           (4.2.1) 

However, facing an uncertain system, we cannot use conventional meth-
ods to establish the “exact” mathematical model of the system (usually 
mean that the differential equation model), so it’s difficult to obtain a 
function of (4.2.1). 

For the uncertain system, we usually do some tests to gain a group of 
input-output data of the system, denoted by 

  IOD , 0,1, ,i ix y X Y i n    , 

which is called as the based data sets of the system. By means of IOD we 
can get a function: 

 0 0
1 1: , ,

0,1, ,
i i is X Y x s x y

i n
 






 

where  0
0 1, , , nX x x x  and also we can write  0

0 1, , , nY y y y  .  

Clearly, the data sets IOD of the system is exactly the graph of the func-
tion 1s . 

In general, we cannot obtain accurate mapping ( )y s x  only through 
the data sets IOD . But we can use the data set IOD to construct a func-
tion to indicate the input-output relation of the system, as the following: 
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: , ( )n ns X Y x y s x                              (4.2.2) 

We try to make the mapping :ns X Y  being close to our goal func-

tion :s X Y  such that it satisfies the condition ns s   , where 
0   is a function approximation error which is able to meet our  

requirements, and   is a kind of norm defined in the continuous func-
tion space ( )C X , usually the norm defined as the following: 

    ( ) max ( )s C X s s s x x X


    . 

Let [ , ]X a b    be the input universe, where   is the real  
number field and [ , ]Y c d    be the output universe; without loss of 
generality, we can assume that the input-output data set IOD  meets the 
following condition: 

0 1

0 1 ,

n

n

k k k

a x x x b
c y y y d
    
    




 

where ( ),ik i  and   is a substitution, i.e. a bijection as follows 

0 1

:{0,1, , } {0,1, , }
                ( ) ,

0 1
i

n

n n
i i k

n
k k k









 
  
 

 




                            (4.2.3) 

If it is without substitution, the output data set  0 0,1, ,iY y i n    

does not meet strict order relationship: 

1 2 nc y y y d      

This strict order relationship is important in the construction of fuzzy sets:  

( ), 0,1, , .iB Y i n    
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We can get a group of fuzzy sets  0,1, ,iA i n    by using 

input data set 0X , and similarly, can get a group of fuzzy sets: 

 0,1, ,
ikB i n    

by using output data set 0Y . These fuzzy sets ,i iA B  can be defined as a 
kind of triangular wave functions.  

Noticing that 1( )i i   , so 1 ( )i
k i
   , and then 

1 ( )i
i kB B

 
 , as a 

result, iB  is easily defined, that is  0,1, ,iB i n   . 

According to the data set IOD, we can get a group of fuzzy inference 
rules of the system: 

If      is      then      is   ,     0,1, ,i ix A y B i n  ,               (4.2.4) 

where iA  and iB  are respectively the fuzzy sets defined on the universes 
X  and Y , i.e., ( )iA X  and ( ),iB Y 0,1, , .i n   Every of 

the inference rules can determine a fuzzy relation ( )iR X Y   as the 
following: 

 ( , ) ( ), ( ) , ( , )
iR A Bx y x y x y X Y      , 

where :[0,1] [0,1] [0,1]    is a fuzzy implication operator. Usually 
  can be taken as the following forms:     or    , i.e., 

:[0,1] [0,1] [0,1]
( , ) ( , ) ,
:[0,1] [0,1] [0,1]

( , ) ( , )

a b a b a b

a b a b a b

  
  

  
  





 

We all know that fuzzy implication operator     is called Larsen  
implication operator. In this paper we often use Larsen implication  
operator. Now the group of inference rules (4.2.4) can be regarded as a 
function as follows: 
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 : , ,
0,1, ,

i i is A s A B
i n

 



 


 
 

Based on these fuzzy relations , 0,1, ,iR i n  , we can get a whole 

fuzzy relation ( )R X Y  , where 
0

n

i
i

R R


  and 

0
( , ) ( , ), ( , )

i

n

R Ri
x y x y x y X Y 


    . 

By using R , we can make a function as the following: 

 

0

: ( ) ( )
( ) ,

( ) ( ) ( , )

( ) ( , )
i

B A Rx X

n

A Rx X i

s X Y
A B s A A R

y x x y

x x y

  

 







 





  

         

  
 

 

Then, in order to obtain the mapping : , ( )n ns X Y x y s x  , we 

can do it by two steps from the “set-set” mapping : ( ) ( )s X Y    
to obtain the “point-point” mapping :ns X Y . 

Step 1. Transform “set-set” mapping into a “point-set” mapping: 

 1 1: ( ), ( ) { }s X Y x s x s x   ,                (4.2.5) 

where its membership function form is as the following: for any binary 
point ( , )x y X Y  ,  

 

 

1 ( ) { }

{ }

0

( ) ( )

( ) ( , )

( , ) ( ) ( )
i i

s x s x

x RX

n

R A Bi

y y

y

x y x y



 

   

  









    

   

                  (4.2.6) 



98 Fuzzy Systems to Quantum Mechanics 
 

Because   1( ) ( )x X s x Y   , we should write the symbol as the 

following:  

  1( ) ( )x X B x s x    , 

where   is regarded as a random variable taking its value in X ; so for 
any binary point  ( , )x y X Y  , ( )B x   is shown as the following:  

 1( ) ( ) 0
( ) ( ) ( ) ( )

i i

n

B x s x A Bi
y y x y    
                  (4.2.7) 

Step 2. We can turn the fuzzy set 1( ) ( ) ( )B x s x Y     into a 

point as being  ( ) ( )
x

y y y x





   in Y  which corresponding to 

x  . 
Literature [3] has proved that the physical center of gravity of plane 

rigid body is reasonable and is an optimal method in the sense of least 
squares. Suppose that 

( ) ( )( )d , 0 ( )dB x B xY Y
y y y y y          

by using the gravity method, we have 

  ( )

( )

( )d
( ) ( )

( )d
B xY

x
B xY

y y y
y y y x

y y














   


                 (4.2.8) 

This means that we have got the mapping as the following: 

( )

( )

:

( )d
( ) ( )

( )d

n

B xY
n

B xY

s X Y

y y y
x s x y x

y y













 


 
                 (4.2.9) 

And then substituting (4.2.7) into the equation (4.2.9), we can get the 
following equation: 



  Function Approximation Properties of Fuzzy Systems and Its Error Analysis 99 
 

 

 

( )

( )

0

0

( )d
( )

( )d

( ) ( ) d

( ) ( ) d

i i

i i

B xY
n

B xY

n

A BY i

n

A BY i

y y y
s x

y y

y x y y

x y y









 

 











    
    








                  (4.2.10) 

Remark 4.2.1  Because of the following expression: 

  ( )( , ) ( ) ( , )B x Rx y X Y y x y     , 

Equation (4.2.10) can be written as a more general form: 

( , )d
( ) ,

( , )d
RY

n
RY

y x y y
s x x X

x y y




 


                  (4.2.11) 

And since 
0

n

i
i

R R


 , the fuzzy relation R  is also regarded as obtaining 

from ( 0,1, , )
ikR i n   by the operation “ ”. In addition to the use of 

operation “ ”, many ways can be used. Therefore, (4.2.11) has a broad-
er meaning.                                                                                                 

The function (4.2.11) :ns X Y  is called fuzzy system based on the 
operating process from Data to Formula by above method. 

From the data set   IOD , 0,1, ,i ix y X Y i n     , we have al-

ready obtained an approximate function :ns X Y  which can approx-
imate the input-output function :s X Y  of the system. However, in 
(4.2.11), the numerator and denominator are integral expressions; while 
in general, these two integrals have almost not analytical solution. To 
facilitate application purposes, we can use the definition of Riemann  
integral to simplify our method. In fact, we let 
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1

1

0

,  0,1, , 1,

,

i i i

i

n

k k k

n

k
i

k

y y y i n

y
d cy

n n







     



    





 

Since 
1( )i

i ky y
 

   , as a result, iy  are all defined. Then, according  

to the meaning of Riemann sum in the definite integration, we have the 
following result: 

 

 

  
  

( )
( ) 0

( )
( )

0

00

00

0

0

0 0

( )d
( )

( )d

( )

( )

( ) ( )

( ) ( )

j j

j j

i
i

i j

n

B x i i i
B x iY

n n
B xY B x i i

i
n n

A B i i iji
n n

A B i iji
n

A i i n
A ii

in n
i

A i A j
i j

y y yy y y
s x

y y y y

x y y y

x y y

x y y x y
y

x y x y









 

 

 

 

 


 
















 


 



     
     

 
  

 


 








 
*

0
( )

i

n

iA
i

x y



    (4.2.12) 

where we have been set the following symbol: 

*

0

( )( ) , 0,1, ,
( )

i

j

i i
nA

A j
j

A x yx i n
x y










  .               (4.2.13) 

It’s not difficult to verify that the function group as being  *
0

( )
i

n

A i
x


is 

linear independent in the function space ( )C X , and every base function 

* ( )
iA

x  has Kronecker property: 
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 *

1,   ,
0,  ,

, {0,1, , }.

i
jA

i j
x

i j
i j n




  
 

 

Now we let the following function: 

*

0
( ) ( )

i

n

n iA
i

f x x y

                             (4.2.14) 

Then the function *

0
( ) ( )

i

n

n iA
i

f x x y

  happens to be an interpolation 

function, which the function group  *
0

( )
i

n

A i
x


 is just regarded its base 

functions.  
In particular, when  ( 0,1, , )iy h i n    , i.e. the set 

 0 0,1, ,iY y i n    

is an equidistant partition data set, which its common interval is 0h  , 

and it’s not difficult to verify that 
0

( ) 1
i

n

A
i

x


 , then 

*

0 0

( ) ( )
( ) ( ),

( ) ( )

0,1, ,

i i

ii

j j

A i A
An nA

A j A
j j

x y x
x x

x y x

i n

 
 

 
 


  





 


          (4.2.15) 

And then the equations (4.2.12) and (4.2.14) will be simplified as: for 
any x X  

0
( ) ( ) ( ) ( )

i

n

n n A i
i

s x s x f x x y


                  (4.2.16) 
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This means that ( )ns x  is approximately a piecewise linear interpolation 
function as the following: 

0
( ) ( )

i

n

n A i
i

f x x y


  

So ( )s x can be approximately regarded as a piecewise linear interpola-

tion function 
0

( ) ( )
i

n

n A i
i

f x x y


 . 

From the data set IOD, we write the following symbol: 

  FIOD , ( ) ( ) 0,1, ,i iA B X Y i n     . 

If it satisfies the condition:  

  0,1, , ( ) ( ), ( ) ( )
i iA Bi n x C X y C Y    , 

then FIOD is called continuous fuzzy data set. We call FIOD being with 
two-phase property, if it satisfies the condition: 

   
   

1

1

0 0
( ) 1, ( ) 1,

{0,1, , 1} ( ) ( ) 1

{0,1, , 1} ( ) ( ) 1

i i

i i

j j

n n

A B
i i

A A

B B

x x

x X i n x x

y X j n x x

 

 

 





 

 

      

      

 




 

Clearly, the two-phase fuzzy data set satisfies the Kronecker properties: 

   1,   , 1,   ,
0,  , 0,  ,

, {0,1, , }.

i j i j

i j i j
A x B y

i j i j
i j n

  
    

 
 

Remark 4.2.2  It’s not difficult to verify, when the FIOD is with two-
phase property, the conclusions derived above remain valid.                    
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4.3   Function Approximation Properties of Fuzzy Systems 

For the data set   IOD , 0,1, ,i ix y X Y i n     , write  

1 , 0,1, , 1i i ix x x i n     . 

Obviously,  
0 1
max 0ii n

x n
  

    ; on the contrary, the following 

implication:  

 
0 1
max 0ii n

n x
  

     

is not true. And if that 
0 1
max 0ii n

n x
  

     is true, then data set 

IOD is called coordinated. That is, IOD is coordinated if and only if  

 
0 1
max 0ii n

n x
  

    . 

We always assume that the following data sets IOD is coordinated. 
In addition, for a continuous function [ , ]s C a b , if the data set IOD 

to meet the interpolation condition about s  i.e.,  

    {0,1, , } i ii n y s x   , 

then it’s not difficult to understand that IOD is coordinated implies the 
following equivalence expression: 

 
0
max 0

iki n
n y

 
    . 

For a given data set IOD , we can get its FIOD with two-phase prop-
erty as follows 

  FIOD , ( ) ( ) 0,1, ,i iA B X Y i n      . 

Suppose the fuzzy system ns  like (2.11) to be constructed by IOD and 
IODF, that is, we have got the equation as the following: 
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( , )d
( ) ,

( , )d
RY

n
RY

y x y y
s x x X

x y y




 


                     (4.3.1) 

And we also suppose that it satisfies condition: 

0 ( , )d , ( , )dR RY Y
x y y R x y y       . 

We call the fuzzy system ns  has function approximation property in the 
universe [ , ]X a b , if for any function [ , ]s C a b , as long as the data 
set IOD satisfies interpolation condition:  

    {0,1, , } i ii n y s x   , 

then ns  converges s  according to the norm of normed linear space, that 

is, for any 0  , N   , such that 

  nn n N s s 


                         (4.3.2) 

where \ {0}   , while   is the set of all natural numbers; in other 

words, the function sequence   1n ns 


 uniformly converges to a continu-

ous function s  in [ , ]X a b . 

Lemma 4.3.1  Let ( , )f x y  be a binary continuous function on X Y , 
where [ , ]X a b  and [ , ]Y c d  are two real number closed intervals, 

for the integral ( ) ( , )d
d

c
I x f x y y   with parameter x , we must have 

this result: for any 0  , there is always 0   which has nothing to do 
with the parameter x , for any partition of Y : 

0 1 nc y y y d     , 

if  
0 1
max ii n

y 
  

  , then for all x X , the Riemann integral sum 
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1

0
,

n

i i
i

f x y




  of ( )I x  must uniformly meet the following strict  

inequality:  

 
1

0
( ) ,

n

i i
i

I x f x y 




                          (4.3.3) 

Proof.   For any 0  , take 1 , 1, 2,k k k    . It’s can be proved 
that there must be one k , such that k   satisfies the conclusion of the 
lemma. Otherwise, for every k , there must exist a point  and a 
partition of Y : 

( ) ( ) ( )
0 1 k

k k k
nc y y y d     , 

and also there must exist a point ( ) ( ) ( )
1, , 0,1, , 1k k k

i i iy y i n       , 

although we have that  ( )

0 1
max

k

k
k i ki n

y 
  

   , but 

   
1

( ) ( )

0
,

kn
k k

k k i i
i

I x f x y 




   . 

Attention to that  kx  is bounded point sequence, there must be a con-

vergent subsequence  jkx  of  kx , such that *j

j
kx x X  .  

Noticing that 0
j

j
k

 , we have the following limit expression: 

     
1

( )

0

* *

0 lim ,

( ) ( , )d 0

k j
jj

j j

n
kk

k k i ij i

d

c

I x f x y

I x f x y y

 





   

  




 

This is a clear contradiction and proves the lemma.                                  
 

kx X
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Lemma 4.3.2  Let ( , )f x y  be a binary continuous function on X Y , 
where [ , ]X a b  and [ , ]Y c d  are two real number closed intervals, 

for the integral ( ) ( , )d
d

c
I x f x y y   with parameter x , if the following 

condition is satisfied 

  ( ) 0x X I x   , 

then there must be  0  , such that for any partition of Y : 

0 1 nc y y y d     , 

and any  1,i i iy y  , the Riemann integral sum  
1

0
,

n

i i
i

f x y




  of 

( )I x  must satisfy the implication: if  
0 1
max ii n

y 
  

  , then 

   
1

0
, 0

n

i i
i

x X f x y




     
 
                     (4.3.4) 

Proof.  It is easy to know that ( ) ( , )d [ , ]
d

c
I x f x y y C a b  ; therefore, 

there must be the minimal point 0x X  of ( )I x , such that  

    0( )x X I x I x   . 

Take 0( )I x  , according to Lemma 4.3.1, there exists 0  , for any 
partition of Y : 

0 1 nc y y y d     , 

and any  1,i i iy y  , the Riemann integral sum  
1

0
,

n

i i
i

f x y




  of the 

integral ( )I x  must satisfy such result: if  
0 1
max ii n

y 
  

  , then we 

can have the following expression: 
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1

0
( ) ,

n

i i
i

x X I x f x y 




 
     

 
 . 

So    
1

0
0

, ( ) 0
n

i i
i

f x y I x I x  




       is true for all x X , 

therefore the conclusion of the lemma is true.                                           

Lemma 4.3.3  Let ( , )f x y and ( , )g x y  are two binary continuous func-
tions on X Y , where [ , ]X a b  and [ , ]Y c d  are two real number 
closed intervals, satisfying the condition:  

  ( , )d 0
d

c
x X g x y y   . 

For any 0  , there is always 0   which has nothing to do with  
parameter x , for any partition: 

0 1 nc y y y d     , 

If  
0 1
max ii n

y 
  

  , then for all x X , we uniformly have 

 

 

1

0
1

0

,( , )d

( , )d ,

n
d

i i
c i
d n

i ic
i

f x yf x y y

g x y y g x y














 




 

                  (4.3.5) 

where  1, , 0,1, , 1i i iy y i n    . 

Proof.  According to Lemma 3.2, we know the fact that  

 
1

0
1 ,

n

i i
i

g x y




  

is with sense for the bigger n  . According to the limit operation 
rules, namely “the limit of quotient is equal to the quotient of limits”, and 



108 Fuzzy Systems to Quantum Mechanics 
 
then by Lemma 4.3.1, we can know that the conclusion of Lemma 4.3.3 
is true.                                                                                                         

Theorem 4.3.1  With respect to the data set IOD, the fuzzy data set with 
two-phase property is as follows: 

  FIOD , ( ) ( ) 0,1, ,i iA B X Y i n      . 

Suppose that the fuzzy system ns  as (4.2.11) constructed by IOD and 
FIOD as follows 

( , )d
( ) ,

( , )d
RY

n
RY

y x y y
s x x X

x y y




 


 

If the following conditions are satisfied:  

0 ( , )d , ( , )dR RY Y
x y y y x y y       , 

then the fuzzy system ns  has function approximation property. 

Proof.  For any given function [ , ],s C a b  suppose that the data set 
IOD satisfies the interpolation condition: 

    {0,1, , } i ii n y s x   . 

We want to prove that ns  converge to s  according to the norm of 

normed linear space  [ , ],C a b  , that is, for any 0  , N   , 

such that 

  nn n N s s 


      . 

In fact, for any 0  , according to equation (2.14), we easily know the 
fact that, 1N   , such that 
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  1 2n nn n N f s 


       
 

 . 

Then, when 1n N , we have that 

2n n n n ns s s f f s s f 
   

        . 

So we only consider the estimation of ns f


 .  

In fact, it’s easy to test that  *
0

( )
i

n

A i
x


 satisfies the two-phase prop-

erty, and for any given [ , ]x a b , there must be {0,1, , 1}i n  , such 
that  1,i ix x x  , then  

* *
1

1( ) ( ) ( )
i i

n i iA A
f x x y x y 


  . 

By using of the following fact:  

* * *
1

0
( ) ( ) ( ) 1

i i i

n

A A A
i

x x x  




   , 

we have the following result: 

 
      

   
   

  

* *
1

* * * *
1 1

* *
1

1

1

1

1

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 max ( ) .

i i

i i i i

i i

n i iA A

i iA A A A

i iA A

i i

mi m i

s x f x s x x y x y

s x x x x s x x s x

x s x s x x s x s x

s x s x s x s x

s x s x

 

   

 



 











  

   

   

   

   

 

 

Because of [ , ]s C a b , so ( )s x  is uniform continuous on [ , ]a b , then 
for the above 0  , there must be 0  , such that 
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      , [ , ] 4x x a b x x s x s x              

By using of the coordination of IOD, we have that, 2N   , such that 

    2 0 1
max ii n

n n N x 

  
       . 

Noticing that  1,i ix x x  , we can easily know that 

     
1 1 0 1

max max maxm m ii m i i m i i n
x x x x 

        
      . 

Therefore we have 

  
1

( ) ( ) 2 max ( ) 2 .
4 2n mi m i

s x f x s x s x  
  

      

Because x  is arbitrary in [ , ]a b , we have  
[ , ]

max ( ) ( ) ,
2nx a b

s x f x 


   

namely 
2ns f 

  .  

Finally, we get the result that,  1 2max ,N N N    , such that 

  2 2nn n N s s   


         
 

  

This means that the fuzzy system ns  must have the function approxima-
tion property.                                                                                              

4.4   The approximation Remainder Estimation 

Theorem 4.4.1  In the condition of Theorem 4.3.1, for any 2[ , ]s C a b , 
suppose that  

    1

2
1{0,1, , 1} , ,

i iA A i ii n C x x 
     ; 
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for the function s , if the data set IOD satisfies interpolation conditions:  

    {0,1, , } i ii n y s x   , 

then we have the following results: 

1) The approximate remainder of ( )nf x  to the continuous function
( )s x  is of the following equation: 

       1
1 2

( ) ( ) ( )

,
2 ( )

n n

i i
i i i i

i

r x s x f x
x x x x

q x
   

 

 
  

               (4.4.1) 

where       1 1{0,1, , 1} , , ,i i i i ii n x x x x x       and 

        
      

      
       

1

1

1

1

1

1

1 1

1

1

2 1 1

( ) ( ) ( ) ,

             2

             ,

( ) .

i i

i i

i i

i i

i i

i A i A i

i i i A i i A i i

i A i i A i i

i A i i A i i

i Ai i i i A i i i

q x x y x y

s y y

s y y

s y y

t s x y s x y

 

      

    

    

    



















 

   

    

     

    

     

 

2)  The approximate error estimate formula of ( )nf x  to the continuous 
function ( )s x  is as the following inequality: 

3
1( ) ( )n nr s x f x M

 
                          (4.4.2) 

where    1 2 10 1 0 1
max , max ,j i i ij n i n

x y y      
      , and  

  
 

1

2 1 1 0 2

min ( ) , ,

1 4 4 ,
8

i i i i

i i i i i
i

C q x x x x

M M M L M L
C
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1 1

1
1 1

1
1 1

0 [ , ] 0 1

1 2, ,

1 , ,

2 , ,

max ( ) , max

max ( ) , max ( ) ,

max max ( ) , max ( ) ,

max max ( ) , max ( ) .

i i i i

i i
i i i i

i i
i i i i

it a b i n

i it x x t x x

i Ai At x x t x x

i A At x x t x x

M s t M M N

M s t M s t

L t t

L t t

 

 

 


 


 

   

 

 

 



 

 

 

 

 





 

Proof.  1)  For any [ , ]x a b , when ( 0,1, , )ix x i n   , the conclu-
sion is clearly true; so we only consider the following situation:  

  {0,1, , } ii n x x   . 

First, it is easy to know that there must exist {0,1, , 1}i n  , such that 

 1,i ix x x  , according to the two-phase property of ( 0,1, , )iA i n  , 

we have 

 

 
   
   

*

* *
1

1

1

0

1

1 1

1

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )
( )

j

i i

i i

i i

n

n jA
j

i iA A

A i i A i i

A i A i

i

i

f x x s x

x s x x s x

x s x y x s x y
x y x y

p x
q x



 

 
 











 





 

  


  





              (4.4.3) 

in which we have set the following expressions: 

   
1 1 1( ) ( ) ( )

i ii A i i A i ip x x s x y x s x y 
                  (4.4.4) 

1 1( ) ( ) ( ) .
i ii A i A iq x x y x y 

                           (4.4.5) 

As a result, ( )nf x  is actually a rational fraction, that is 
( )( )
( )

i
n

i

p xf x
q x
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and thus the approximation of ( )nf x  to ( )s x  is a rational fraction  
approximate problem.  

Because ( )nf x  makes sense, we know the fact as the following: 

  ( ) 0 .ix X q x    

And then, we proceed to consider the representation of the following  
approximate item: 

( )( ) ( ) ( ) ( )
( )

i
n n

i

p xr x s x f x s x
q x

     

Reform it into the following form: 

( ) ( ) ( ) ( ) ( ) ( )
                ( ) ( ) ( )
n i i n i

i i

r x q x s x q x f x q x
s x q x p x

 
 

                  (4.4.6) 

According to the well-known interpolation conditions, we can know the 
fact that   0, , 1n jr x j i i   , or  

      0, , 1j i j i js x q x p x j i i    . 

Assume that ( ) ( )n ir x q x  has the following form 

  1( ) ( ) ( )n i i ir x q x k x x x x x                        (4.4.7) 

That is, 

  1( ) ( ) ( )
                ( ) ( ) ( )
n i i i

i i

r x q x k x x x x x
s x q x p x

  

 
, 

in which the function ( )k x  is a undetermined. Now we start to consider 
how to solve out ( )k x .  

In fact, let x  be a fixed point, and do an auxiliary function: 

  1( ) ( ) ( ) ( ) ( )i i i i it s t q t p t k x t x t x      .           (4.4.8) 
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Obviously we know the fact that  2
1,i i iC x x  . According to (4.4.8), 

we learn the fact as following:  

  0, , 1i jx j i i    ; 

also, it’s not hard to see ( ) 0i x  . This means that, in the closed inter-
val ( )i t  has three zero points: 1i ix x x   .  

According to Rolle differential intermediate value theorem, the deri-
vate function ( )i t  of ( )i t  in the open intervals  ,ix x  and  1, ix x   

has a zero point respectively, denoted by 1 1( )i i x   and 2 2 ( )i i x  , 
which all rely on x . 

We can continue to use Rolle differential intermediate value theorem, 
the derivate function ( )i t  of ( )i t  in the open interval  1 2,i i   must 

have a zero point, denoted by ( )i i x   (certainly, they also rely on x ), 

that is   0i i   . 

In order to be more convenience, we write the following symbols: 

  

1 2 3

1 2

3 1

( ) ( ) ( ) ( ),
( ) ( ) ( ), ( ) ( ),
( ) ( ) .

i i i i

i i i i

i i i

t t t t
t s t q t t p t
t k x t x t x

   
 
 

  

 

 


 

Then we have the following equations: 

 
 

 
    

1

1

1

1 1

1

1

2 1 1

3

( ) ( ) ( ) ( )

            2 ( ) ( ) ( )

            ( ) ( ) ,

( ) ( ) ( ) ,

( ) 2 ( ).

i i

i i

i

i i

i A i A i

A i A i

A i i

i A i i A i i

i

t s t t y t y

s t t y t y

s t t y y

t t s x y t s x y

t k x
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Now substituting      1 2 3( ) , ( ) , ( )i i i i i ix x x         into  ( ) 0i i x   , 

we have the following equation: 

    1 2
1( ) ( ) ( )
2 i i i ik x x x      . 

And then substituting ( )k x  into (4.4.7), we have the following equation: 

       1
1 2

( )( ) ( ) ( ) ( )
( )

( ) ( ) ,
2 ( )

0,1, , 1.

i
n n

i

i i
i i i i

i

p xr x s x f x s x
q x

x x x x
x x

q x
i n

   

   

 
  

 

 

2)  For any  1,i ix x x  , it’s easy to learn the following inequality: 

  1

21 1
1

1 .
2 2 4

i i

i i i i
i i i

x x x x

x x x xx x x



 


 

         
  

 

Because ( ) 0iq x   and ( )iq x  is continuous in closed interval  1,i ix x  , 

there is a minimal value as the following: 

  1min ( ) ,i i i iC q x x x x   . 

Let  
1 1
min ii n

C C
  

 , and then, we have the following inequalities: 

   
 

1 2 2 1 1 0 2

2 0 2 2

( ) 4 2 ,

( ) 2 .
i i i

i i i

x M M L M L

x M L

 

 

    

  
 

Finally, according to the remainder expression, we have the following 
inequality: 
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1

1

1

,

1
1 2,

1
1 2,

2 2
2 1 1 0 2

max ( )

max ( ) ( )
2 ( )

max ( ) ( )
2 ( )

4 4 .
8

i i

i i

i i

i nx x x

i i
i i i ix x x

i

i i
i i i ix x x

i

i
i i i i i

i

r r x

x x x x
x x

q x

x x x x
x x

q x

x M M L M L
C

   

   

















      
  
      
  


   



 

Also, because ( )s x  is continuous function, so we have ( )i i iy s x   , 
that is, i iy c x   , where c  is a constant. Therefore, we get 

  3
10 1

max .n ii n
r r M

   
    

This is the end of the proof.                                                                       

Corollary 4.4.1  In Theorem 4.4.1, if all ( 0,1, , )iA i n   are triangular 
wave functions, then 

1)  The approximate remainder representation of ( )nf x  to the function 
( )s x  is shown as follows 

    1
1( ) ( ) ( ) ( )

2 ( )
i i

n n i i
i

x x x x
r x s x f x x

q x
   
           (4.4.9) 

where    1 10,1, , 1, , , ,i i i i ii n x x x x x     , and 

       

 

1 1

1
1 1

1

( ) ( ) ( ) ,

( ) ( ) ( ) ( )

                   2 ( ) .

i i i i i

i i
i i i i i i i

i i

i i
i

i i

q x A x y A x y

y yx s x x x x x
x x

y ys x
x x
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2)  The approximate error estimate expression of ( )nf x  to the contin-
uous function ( )s x  is shown as follows 

 2
2 14

8
i i

n i i i
i

xr M x M
C

 
   .                   (4.4.10) 

Proof.   Firstly, it’s easy to understand that, for any {0,1, , 1}i n  , 
we have the following equations: 

1 1

1 1( ) , ( ) , ( ) 0 ( )
i i i iA A A A

i i

x x x x
x x

   
 

       
 

 

Substituting them into the expression of  1 ( )i i x   and  2 ( )i i x  , we 

get the following inequality:  

 1 2 2 1
1( ) 4i i i i i

i

x M M
x

 
 

     
. 

And then we have the fact that 

 
 

 
    

 

1

1

,

1
1,

2
2 1

max ( )

max ( )
2 ( )

4 .
8

i i

i i

i nx x x

i i
i ix x x

i

i i
i i i

i

r r x

x x x x
x

q x
x M x M
C

 













 


 
  

. 

Finally, we have the inequality: 2
10 1

maxn i si n
r r M

   
   , where 

 2 10 1
max 4

8s i i ii n
i

NM M x M
C  

 
  

 
 . 

This is the end of the proof.                                                                        
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4.5   Error Estimation between Fuzzy Systems ( )ns x  and ( )nf x  

Now we consider the error estimation problem between fuzzy system 
( )ns x  and ( )nf x . 

Theorem 4.5.1  Under the conditions of Theorem 4.3.1, for any continu-
ous function [ , ]s C a b , write ( ) ( ) ( )n n nr x f x s x .  Suppose that the 
following condition is satisfied 

    1

1
1{0,1, , 1} ( ), ( ) ,

i iB B i ii n y y C y y 
     , 

and 1, , 0,1, ,i iA B i n    are fuzzy numbers. If the data set IOD satis-
fies the interpolation condition: 

    {0,1, , } i ii n y s x   , 

then we have the following result: 

2
1n n nr f s

 
                               (4.5.1) 

where  

 

 

  
 

1 1

0 0 1
2

0

0 2
0

2

1 0 1 , ,

2 24 , ( ) ( ) ,

( ) ( ) , max ( ) 2 ,

max ( ) 2 ,

min min ( ) , min ( , )d ,

max max ( ) , max

i

i

k ki i
k k k ki i i i

n

n A i i
i

n

n A i nx Xi

nx X

d

n Rcx X x X

B Bi n y y y y y y

M M K N N P x x y y
D

Q x x y P P x M

Q Q x

D Q x x y y

K y







 


 








 

          

 
 

  

 

 







 

 





  1
( ) .y 

 
 

 

Proof.  For any [ , ]x X a b  , we have the following inequality: 
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*

0

0

0

( , )d
( ) ( ) ( )

( , )d

( ) ( , )d ( , )d( )
( )( , )d ( , )d( )

( ) ( , )d ( ) ( ) ( ) ( , )

iki

k i ii

k ii

d
n Rc

n n k dA
i

Rc

n
d d

A k k
R Ri c n c

n d d
nR RA k c c

i

d d

n R n n n Rc c

y x y y
f x s x x y

x y y

x y y y x y y y x y yP x
Q xx y y x y yx y

Q x y x y y P x P x Q x x y






  

 

 







  


   



  





  
 

  

2

d

( ) ( , )d

( ) ( , )d ( ) ( ) ( , )d ( )

( ) ( , )d

( , )d ( ) ( , )d ( )

d

n Rc

d d

n R n n R nc c
d

n Rc

d d

R n R nc c

y

Q x x y y

Q x y x y y P x P x x y y Q x

Q x x y y

Q y x y y P x P x y y Q x

D



 



 

  


  




 


 

 

Now we separately consider the estimations of the following two abso-
lute values:  

( , )d ( ) , ( , )d ( )
d d

R n R nc c
y x y y P x x y y Q x     

1)  First we consider the estimation of ( , )d ( )
d

R nc
y x y y P x  .  

By using of the two-phase property of ( 0,1, , )
ikA i n  , for x X , 

we can easily to know the fact: , {0,1, , }s t n   , such that 

    ( ) ( ) 1 { , } ( ) 0
k k ks t iA A Ax x i s t x        , 

where   means “and”. Then we have the following expression: 
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0 0

( , )d ( )

( ) ( ) d ( )

( ) ( ) ( ) ( ) d

   ( ) ( ) .

k k k i ij j i

k k k ks s t t

k s s k t ts t

d

R nc

nnd

A B A k kc j i

d

A B A Bc

A k k A k k

y x y y P x

y x y y x y y

y x y x y y

x y y x y y



  

   

 






      
 

   

   






 

Case 1.  0s t  , that is s t . At this time, there must be 
skx x , 

that is, x  just in the node 
skx , then ( ) 1

ksA x  . We can process the var-

iable y  by using Taylor expansion based on three kinds of situations. 

Situation 1. 0 s n  . Refer to Figure 4.5.1, where   

  ( ) ( )
s ksk By Y B y y   . 

 

 
Fig. 4.5.1.  The situation of s t  and 0 s n   

   

At this situation, there must exist  11 ,
s ss k ky y
   and  1

,
s ss k ky y


 , 

such that 

( , )d ( ) ( )d
k s ss

d d

R n B k kc c
y x y y P x y y y y y       
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1

1

1 1 1
1 1

1

1
1 1

( )d ( )d

( ) d  

  ( ) d

( ) d ( )

k ks s

k k s ss sk ks s

ks

s k s k ss sks s

ks

s k s k s s ss sks s

ks

k s ks sks s

y y

B B k ky y

y

k B k B ky

y

k B k B k k ky

y

B k By

y y y y y y y y

y y y y y y y

y y y y y y y y y

y y y y y y y





 

 

 

 

 





  
 




 

   

 
   

 

 
     

 

 
  

 





  

       

     

1

1

1
1 1

1

2 2
2 2 0 1

d

( ) d ( ) d

max ( ) , ( ) 1

ks

s
ks s

k ks s

k s k ss sk ks s s s

k ks s
s s

y

ky

y y

B k B ky y

B B

y y y

y y y y y y y y y y

y y y y M K

 

 

 

 






 





 
   

        
  



 

 

Situation 2. 0s  . Refer to Figure 4.5.2, where 
0 0
( ) ( )

kk BB y y . 

At this situation, there exists  1
,

s ss k ky y


 , such that 

 1
2
2

0 1( , )d ( ) ( )d 1
2

ks

k s ssks

d y

R n B k kc y
y x y y P x y y y y y M K  

      
 

 

Fig. 4.5.2.  The situation of s t and 0s   
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Situation 3. s n . Refer to Figure 4.5.3, where ( ) ( )
n knk BB y y , 

and so on in the following figures. Similarly, we have 

 
2
2

0 1( , )d ( ) 1
2

d

nc
yR x y y P x M K

   . 

 

 

Fig. 4.5.3.  The situation of s t  and s n  
 

Case 2.  1s t  . We only consider s t , because we can get the 
same result with s t  or s t . We still process the variable y  by using 
Taylor expansion on three kinds of situations. 

a)  0 s t n   . Refer to Figure 4.5.4. Because ( 0,1, , )
ikB i n   

are fuzzy number, there must be a cross point  * ,
s tk ky y y  between 

the membership functions ( ) ( )
k ks sA Bx y   and ( ) ( )

k kt tA Bx y   of fuzzy 

sets, and then there are four points as the following:  

       1 1

* * * *
1 1 2, , , , , , ,

s s s t t ts k k k k t k ky y y y y y y y   
       

such that 

    
( , )d ( )

   ( ) ( ) ( ) ( ) d
k k k ks s t t

d

R nc

d

A B A Bc

y x y y P x

y x y x y y
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1

1
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1
1
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k kt t
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A B A By y

y y
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y x y y y x y y

y x y y y A x y y

x y y x y y

x y y y y
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2
2 0 1

d
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   ( ) ( ) d     

   ( )

2 1

ks
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k s s k k ss s sks

kt

k t t k kt t t

kt

k k tt tkt t

k s s ss

y

y

A k k A B ky

y
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y
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x y y y x y y y y y

x y y y x y y y y y

x y y y y y
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0 22M 
 

 

 

Fig. 4.5.4.  The situation of 0 s t n    
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b) 0 s t n   . Similarly, we can have the following inequality (see 
Figure 4.5.5): 
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Fig. 4.5.5.  The situation of 0 s t n    

 
c) 0 s t n   . Similar to the former situation, we have the follow-

ing inequality (see Figure 4.5.6): 
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Fig. 4.5.6.  The situation of 0 s t n    
 

Case 3. 1s t  . Assume that s t , and the situation for s t  is 
the same. We can process the variable y  by using Taylor expansion on 
four kinds of situation. 

 

 

Fig. 4.5.7.  The situation of 1s t  and 0 s t n    

 
 

a) 0 s t n   . For this situation, we have the following inequality 
(see Figure 4.5.7): 
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b) 0 s t n   . It is easy to know the following inequality (see  
Figure 4.5.8): 
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Fig. 4.5.8.  The situation of 1s t   and 0 s t n    
 
 

c) 0 s t n   . Also we can easily know the following inequality (see 
Figure 4.5.9): 
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Fig. 4.5.9.  The situation of 1s t   and 0 s t n    
 

 
d) 0 s t n   . At last, we can know the following inequality: 
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For all three kinds of cases, we get the inequality: 

 2
2 0 1 0 2( , )d ( ) 2 1 2

d

R nc
x y y Q x M K M       . 

2)  Now, we turn to the estimation of ( , )d ( )
d

R nc
x y y Q x  .  

In fact, we also use the two phase property on ( 0,1, , )iA i n  . For a 
given point x X , we know the following fact: 

  , {0,1, , } ( ) ( ) 1
k ks tA As t n x x     . 
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Then we have the following equation: 
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Case 1. 0s t  , that is s t . Similarly, we process the variable y  

by using Taylor expansion on three kinds of situation, and get the follow-
ing results: 

a)  2
1 20 ( , )d ( )

d

R nc
s n x y y Q x K      . 

b)  
2
2

10 ( , )d ( ) .
2

d

R nc
s x y y Q x K 
     

c)  
2
2

1( , )d ( ) .
2

d

R nc
s n x y y Q x K 
     

Case 2.  1s t  . Assume that s t  and for s t , the situation is 
the same. We still process the variable y by using Taylor expansion on 
three kinds of situation. 

a)  2
2 1 20 ( , )d ( ) 2 2 .

d

R nc
s t n x y y Q x K          

b)  2
2 1 2

30 ( , )d ( ) 2 .
2

d

R nc
s t n x y y Q x K          

c)  2
2 1 2

30 ( , )d ( ) 2 .
2

d

nc
s t n R x y y Q x K          

Case 3. 1s t  . Assume that s t  and for s t , the situation is the 
same. We can process the variable y  by using Taylor expansion on four 
kinds of situations as the following: 
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a)  2
2 10 ( , )d ( ) 2 .

d

R nc
s t n x y y Q x K        

b)  
2
2

1
30 ( , )d ( ) .

2
d

R nc
s t n y x y y P x K 

       

c)  
2
2

1
30 ( , )d ( ) .

2
d

R nc
s t n x y y Q x K 

       

d)  2
2 10 ( , )d ( ) .

d

R nc
s t n x y y Q x K        

For all three kinds of cases, we get the following inequality: 

2
2 1 2( , )d ( ) 2 2

d

R nc
x y y Q x K      . 

In the end, according to the results of 1) and 2), we have 

    
2

2 2
2 2 0 1 0 2 0 2 2 1 2

2

20 0 1 2 2
22

( ) ( )

( , )d ( ) ( , )d ( )

2 1 2
2

2 24

n n

d d

R n R nc c

s x f x

Q y x y y P x P x y y Q x

D
M K M M K

D
M M K

D

 



  


         


   
 

 
 

Because of 2 1c   , we can write 0 0 1
2

2 24 M M K N N
D

 
  , 

therefore we have the result: 

  2
1max ( ) ( )n n n n nx X

r s f s x f x
  
       

The theorem is completely proved.                                                            

Corollary 4.5.1  In Theorem 4.5.1, when all ( 0,1, , )iB i n   are trian-
gular fuzzy sets, then   in (5.1) turn into the following equation: 
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0 0 0
2

2 24 M M N N
D

 
                            (4.5.2) 

where 2
0 0 1

max
i n

i

N
y  

 
   

.                                                                         

According to the results of Theorem 4.4.1 and Theorem 4.5.1, we can 
get the conclusion that we need and is shown as the following theorem.    

Theorem 4.5.2  In the conclusion of Theorem 4.4.1 and Theorem 4.5.1, 
if we write *( ) ( ) ( )n nr x s x s x , then we have the following inequality: 

 

*

2
1 1

n n n n n

n n

r s s s f f s

r r M
  

 

     

     
                 (4.5.3) 

where the meanings of symbols 1, ,M    have been provided in Theo-
rem 4.4.1 and Theorem 4.5.1.                                                                     

4.7   Conclusions 

In this section, function approximation effect analysis of fuzzy systems is 
researched in details. First, the structures of fuzzy systems are discussed 
where a kind of important structure formed by so-called CRI method and 
the gravity method defuzzification and Larsen implication operator. Sec-
ond, it is proved that this kind of fuzzy systems can approximate any real 
continuous function to arbitrary accuracy in a general sense. Third, the 
error estimate of the function approximation is given.  

Function approximation property and approximation effect analysis of 
fuzzy systems are essentially belonging to function approximation theory 
in real analysis or mathematical analysis. So we should adequately use 
classical tools of real analysis or mathematical analysis to study fuzzy 
systems.  

 
 



  Function Approximation Properties of Fuzzy Systems and Its Error Analysis 131 
 
References 

1. Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems 
and decision processes, IEEE Trans. SMC, 3, pp. 28–44. 

2. Li, H. X. (1998). Interpolation mechanism of fuzzy control. Science in China (Series 
E), 41(3), pp. 312-320. 

3. Li, H. X. (2006). Probability representations of fuzzy systems, China Science (F  
Series), 49(3), pp. 339-363. 

4. Castro, J. L. (1995). Fuzzy logic controllers are universal approximators, IEEE 
Trans. SMC, 25, pp. 629–635. 

5. Buckley, J. J. (1993). Sugeno type controllers are universal controllers, Fuzzy Sets 
Syst., 53, pp. 299–304. 

6. Liu, P. Y. and Li, H. X. (2005). Approximation of stochastic processes by T–S fuzzy 
systems, Fuzzy sets and systems, Fuzzy Sets and Systems, 155, pp. 215–235. 

7. Li, H. X. and C.L. Philip Chen. (2000). The equivalence between fuzzy logic  
systems and feedforward neural networks, IEEE Transactions on Neural Networks, 
11(2), pp. 356-365. 

8. Liu, P. Y. and Li, H. X. (2001). Analyses for  ( )pL  -norm approximation capabil-
ity of Mamdani fuzzy systems, Information Science, 138, pp. 195-210. 

9. Li, Y. M., Shi, Z. K., and Li, Z. H. (2002). Approximation theory of fuzzy systems 
based upon genuine many-valued implications––SISO cases, Fuzzy Sets Syst., 130, 
pp. 147–157. 

10. Zadeh, L. A. (1978). Fuzzy sets as a basic for a theory of possibility, Fuzzy Sets and 
Systems, 1, pp. 3-28. 

11. Li, Y. M., Shi, Z. K., and Li, Z. H. (2002). Approximation theory of fuzzy systems 
based upon genuine many-valued implications––MIMO cases, Fuzzy Sets Syst., 130, 
pp. 159–174. 

12. Tikk, D., Koczy, L. T. and Gedeon, T. D. (2003). A survey on universal approxima-
tion and its limits in soft computing techniques, International Journal of Approxi-
mate Reasoning, 33, pp. 185–202 

13. Zeng, X. J. and Singh, M. G. (2000). Approximation accuracy analysis of fuzzy  
systems as function approximators. IEEE Trans. Fuzzy Systems, 4(1), pp. 44-59. 

 
 
 
 
 



132 

Chapter 5  

Probability Representations of 
Fuzzy Systems 

5.1   Background of Birth of Fuzzy Systems 

In this Chapter, the probability-theoretical meaning of fuzzy systems is 
opened out and it is pointed out that COG method that is a defuzzifica-
tion technique used commonly in fuzzy systems is reasonable and is op-
timal method in the sense of average square. Based on different fuzzy 
implication operators, several typical probability distributions such as 
Zadeh distribution, Mamdani distribution, Lukasiewicz distribution, etc. 
are given. They act as “inner kernels” of fuzzy systems. Furthermore, by 
some properties of probability distributions of fuzzy systems, it is also 
demonstrated that CRI method, proposed by Zadeh, for construction of 
fuzzy systems is logical basically and effective. Besides, the special  
action of uniform probability distributions in fuzzy systems is character-
ized. Finally, the relation between CRI method and triple I method is 
discussed. In the sense of construction of fuzzy systems, when restricting 
three fuzzy implication operators in triple I method to same one operator, 
for relation between CRI method and triple I method, the following three 
basic situations happen: 1) Two methods are equivalent; 2) The latter is 
degeneration of the former; 3) The latter is ordinary whereas the former 
is not ordinary. When three fuzzy implication operators in triple I method 
are not restricted to same one operator, CRI method is a special example 
of triple I method, that is, triple I method is a more comprehensive algo-
rithm. Since triple I method has good logical foundation and comprises 
an idea of optimization of reasoning, triple I method shall possess beauti-
ful foreground of application. 
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It is well-known that just due to consideration of abundant uncertain 
systems Zadeh put forward the notion of fuzzy sets and formed the fuzzy 
reasoning by means of fuzzy sets, thereby could express a system  
approximately [1] . Such systems constructed on the basis of fuzzy reason-
ing are called fuzzy systems in general [2 4] . The research that takes 
fuzzy systems as object has engaged broad attention of scholars [5 7] . For 
instance, universal approximation property of fuzzy systems is an aspect 
which the researchers take pleasure in studying [8,9] . If a fuzzy system 
serves as a controller then it also shapes fuzzy control theory that is a 
research discipline having extremely strong applicability [10,11] . However, 
one must pay attention to difference between fuzzy systems and fuzzy 
controllers. The fuzzy systems are distinguished to open-loop systems 
and closed-loop systems, and the universal approximation property of 
fuzzy systems is discussed for open-loop fuzzy systems as a rule. Mean-
while, fuzzy controllers are a kind of closed-loop fuzzy systems. In par-
ticular, for the fuzzy controller with adaptive function (like the variable 
universe adaptive fuzzy controller), one should be careful in the study of 
its universal approximation properties, since there does not exist a fixed 
and invariant function to be approximated and the object it need to  
approximate is a stochastic process.  

We first of all talk about the background of birth of fuzzy systems. 
Figure 1.3.1 has shown a single-input single-output open-loop system. 
The input variable x takes values in the input universe X  and the output 
variable y  takes values in the output universe Y . If this system S  is a 
deterministic system then one may use the conventional method to make 
a mathematical model of the system S  (for example, one can use the 
mechanism modeling approach to establish a differential equation model) 
and find a solution ( )y x  of the model by analytic or numerical methods. 
In this way, one think that this system has been mastered basically (the 
more in-depth questions are of qualitative problems, i.e., controllability, 
observability, stability, etc.). Then the system S  may be simply under-
stood by a functional relationship, denoted by s , i.e.,  

                     : , ( )s X Y x y s x  .                       (5.1.1) 
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However, for an uncertain system, we cannot use the conventional 
method to make an “accurate” mathematical model of the system S  (we 
usually indicate the differential equation model), and so it is very diffi-
cult to obtain the functional relationship like (5.1.1). This shows that it is 
the too high request for an uncertain system S  to directly obtain the cor-
respondence relationship between crisp points x X  and crisp points 
y Y .  

Without more ado, decreasing the request, we first try to obtain a cor-
respondence relationship, denoted by the following mapping s , between 
the “rough” points as being ( )A X    and “rough” points as  
being ( )B Y   , i.e., 

                   * *: , ( )s A B s A    ,                   (5.1.2) 

where ( )X  and ( )Y  are the set of all fuzzy sets on X and the set 
of all fuzzy sets on Y , respectively, and   and   are a subset of 

( )X and a subset of ( )Y , respectively. How many elements should 
  and  contain in ( )X  and ( )Y , respectively?  

The fundamental principle to answer this question is to consider 
whether the numbers of elements in   and   are enough to employ. 
For brevity, we customarily choose the finite sets for   and  . 

Obviously, the function *s  is just a correspondence relationship  
between some “sparsely distributed” representative points in ( )X  and 
some “sparsely distributed” representative points in ( )Y , and is not 
enough for the requirement to be satisfied (from the viewpoint of  
systems, this indicates that under the certain inputs there shall happen  
the phenomena such that the system has not responses). Hence, after  
obtaining of *s  we again extend *s  to a correspondence relationship, 
denoted by **s , from ( )X  to ( )Y , i.e.,  

                      ** **: ( ) ( ), ( )s X Y A B s A    .           (5.1.3) 

And then, we have to brain storm to transform **s  to a correspondence 
relationship, denoted by s , between crisp points x X  and crisp points
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y Y , i.e., 

                    : , ( )s X Y x y s x   .                    (5.1.4) 

If this method is “felicitous” then we regard the function ( )s x  as an  
approximation of function ( )s x . 

In this way, we think that the uncertain system S  has been mastered 
basically. 

For the uncertain system S , although we could not obtain the func-
tional relationship ( )s x  expressing the system through conventional 
method, we went around a big bend: Letting the clear functional relation-
ship ( )s x  be the pre-assumed target, we first attempted to obtain a 
“rough” functional relationship *( )s x , next expanded it to **( )s x , and 
finally arrived at a clear functional relationship ( )s x . From the view-
point of result of construction of fuzzy systems, it is nothing but to ob-
tain the clear functional relationship. Henceforth, we shall not distinguish 
the word of fuzzy system from the functional relationship s . Of course, 
this is an understanding in narrow sense about the fuzzy system [12,13] .  

If we have a certain method that can realize the above transformation 
process from *( )s x  to ( )s x , then it is naturally asked whether our 
method is felicitous or not, in other words, whether or not ( )s x  can ap-
proximate ( )s x  commendably. This is the headstream of study of uni-
versal approximation property of fuzzy systems. A fuzzy system ( )s x is 
said to have universal approximation property if for a given function

( )s x satisfying some conditions and for any 0  there exists a con-

struction of s  such that s s , where   denotes the norm in a normed 

linear space where ( )s x  and ( )s x  are defined.  

5.2   Sketch of Fuzzy Systems 

We first discuss the construction of function *s . For convenience, restrict 
the input universe X and the output universe Y into a one-dimensional 
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real space  , i.e., ,X Y   , where 1  is one-dimensional Borel  -
field. Select the following fuzzy set classes: 

 
 

1 ( ),

1 ( )
i

i

A i n X

B i n Y

   

   

 

 
 

The fuzzy sets iA  and iB  are called the linguistic values.   and   are 
regarded as linguistic variables and take values iA  and iB  in their  
“abdomens”, respectively. With them, we form n rules of fuzzy  
reasoning: 

If is then is , 1,2, , .i ix A y B i n                  (5.2.1) 

Relative to linguistic variables   and  , x X  and y Y  are called 
basic underlying variables. Thus we obtain the following functional rela-
tionship: 

            
* *: , ( ) ,

1, , .
i i is A s A B

i n



 


 

                   (5.2.2) 

We next consider how to gained function **s . In (5.2.1), the i th rule 
of reasoning forms a fuzzy relation ( )iR X Y  (called also a truth 
domain) related to this rule. That is determined by a certain implication 
operator [14-17] 2: [0,1] [0,1]  , i.e., 

 ( , ) ( ), ( ) , 1,2, ,
i i iR A Bx y x y i n      . 

Doing coupling between these n  rules by “OR” (it corresponds to set 
operation “join”) naturally, we can form the total fuzzy relation of the 

fuzzy reasoning 
1

n

i
i

R R


 , i.e., 

        
1 1

( , ) ( , ) ( ), ( )
i i i

n n

R R A Bi i
x y x y x y    

 
    .           (5.2.3) 
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The handling process to form total fuzzy relation of fuzzy reasoning R
through all “partial relations of reasoning” iR  is called the “relation  
synthesis”. 

Remark 5.2.1  Due to (5.2.3), we easily see that the tool of realization  
of relation synthesis is binary operation on [0,1] , e.g., 

2:[0,1] [0,1]
( , ) ( , ) max( , )a b a b a b a b
 

   
 

which we take pleasure in use. In general, we may use triangular conorm, 
denoted by  . For instance,   , called the bounded sum operator, is 
also usually considered internally: 

2:[0,1] [0,1]
( , ) ( , ) ( ) 1a b a b a b a b
 

     
               (5.2.4) 

For any a given fuzzy set ( )A X , we can obtain a result of fuzzy 
reasoning ( )B Y  through total fuzzy relation of fuzzy reasoning R . 
This corresponds to deriving a fuzzy transformation, denoted as “  ”, 
from ( )X  to ( )Y  in terms of the fuzzy relation R , i.e.,  

: ( ) ( )
( )

X Y
A B A A R



 


  

 
                              (5.2.5) 

How to realize A R ? This is a quite dainty problem and is worthy of 
discussion. As a rule, B A R   is stated as the following: 

( ) ( ( ) ( , )),B A Rx X
y x x y y Y  


    .              (5.2.6) 

This implies that we have constructed a kind of functional relationship 
**s   , i.e., 

**

**

: ( ) ( )
( )

s X Y
A B s A A R



  
 

                           (5.2.7) 
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Remark 5.2.2  One may see that realization of fuzzy transformation
A R needs a pair of binary operations on [0,1] , e.g., ( , )  used in 

(5.2.6). In general, one should adopt a pair ( , )  of triangular norm and 
triangular conorm, where denotes a triangular norm. For example, mul-
tiplication and bounded sum constitute a pair of operators ( , )  that has 
wonderful analytical properties.                                                                 

Remark 5.2.3  The handling process from *s  to **s  is just CRI (Com-
positional Rule of Inference) algorithm, proposed by Zadeh, that is 
widely used and extensively employed [1 4,18,19] . However, it is still dis-
puted whether CRI method is reasonable or not [20 23] . The latter result in 
the present paper will show that CRI method is reasonable on the whole 
case.                                                                                                            

We finally consider the construction of function s . For any a given 
point x X , in order to use (5.2.6), it needs to make fuzzification to 
x . How to do the fuzzification? The approaches vary and the singleton 
fuzzification is used mostly at present. Namely, define a singleton fuzzy 
set A  as follows: 

                          
1,

( )
0, .A

x x
x

x x
 


  

                           (5.2.8) 

Substituting A  into (5.2.6), we obtain result of reasoning ( )B Y  
as follows: 

                        
1

( ) , , ( )
i i

n

B R A Bi
y x y x y    


    .        (5.2.9) 

Since B  is a fuzzy set, we have to obtain exact quantity y Y  by a 
defuzzification technique. If we are of the following condition: 

| | ( )d , 0 ( )d
Y Y

y B y y B y y        

then we often use “COG (center of gravity) method” to obtain y , i.e., 
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( )d

( )d
BY

BY

y y y
y

y y








  


 .                          (5.2.10) 

Noticing that notations x  and y  have been made simply for clarity 
when deriving (5.2.10), we gained the following functional relationship 
by rewriting x  as x  and by replacing y  with ( )s x : 

                
( )d

: , ( )
( )d

BY

BY

y y y
s X Y x s x

y y








 


                   (5.2.11) 

As shown in Figure 5.2.1, consider how to transform a “rough  
quantity” ( )B Y on Y to an exact quantity y in Y . Starting from 
physical intuitive concept, COG method is a technique that is most easily 
accepted by persons. But, physical intuitive thing cannot replace rational 
mathematical expression. Then, whether or not COG method is assuredly 
reasonable? Whether there is any potential mathematical law in the back-
side of COG method? This is an important problem worthy of discussion. 

 

 
Fig. 5.2.1.  Center of gravity 

5.3   Probability Significance of Fuzzy Systems 

A new discovery scientific researches is sometimes such a process: first 
carefully observe something of which it is worthy to get to the bottom, 
and then obtain some feeling through comparison and association, there-
by produce a light of new idea and even set a piece of prairie ablaze.  
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Herein, we consider (5.2.10) carefully and look at that this thing been 
from physics and which well-known expression in mathematics are alike 
eventually. For clarity, we note that ( )B y   in (5.2.10) is related to input 

x . With this understanding, we should denote  B B x x   and de-

note ( )B y   by the following symbol: 

                   ( ) ( )BB x x y y     ,                          (5.3.1) 

which implies that we obtain “rough” output ( )B Y under condition
x x . Noticing arbitrariness of x X , we rewrite   ( )B x x y    as the 

form of a bivariate function :p X Y   without more ado: 

   

    
1

, ( ) ( )

, , ( )
i i

BB x x

n

R A Bi

p x y y y

x y x y

 

   

 



 

   


 

Because point x x X   is arbitrarily chosen in X , we can rewrite 
above equation as the following: 

 
1

( , ) ( ) ( , ) ( ), ( )
i i

n

B R A Bi
p x y y x y x y    


            (5.3.2) 

Then, (5.2.11) changes to the following: 

                         
( , )d

( )
( , )d

Y

Y

yp x y y
s x

p x y y
 


.                           (5.3.3) 

For the sake of more clarity, we expand ( , )p x y  to a function, denoted 
by ( , )q x y , on 2 , as the follows: 

( , ) ( , ) ( , ) ( , )
( , ), ( , )

          
0, ( , ) ,

X Y X Yq x y p x y p x y x y
p x y x y X Y

x y X Y

  

 
  

 


          (5.3.4) 
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where ( , )X Y x y   is characteristic function of set X Y and

( , ) X Yp x y    is a shortening of ( , ) ( , )X Yp x y x y  , and henceforth we 
shall write expressions according to these notations. 

Notice that in (5.3.3) if replace ( , )p x y  with ( , )q x y  then it corre-
sponds to extending of function ( )s x  to a function, denoted by ( )s x for 
example, on  , and so we apparently define ( ) ( ) Xs x s x  . But, for 
briefness, we still denote ( )s x  by ( )s x . This promise shall be valid  
for all of below similar situations as well. Thus (5.3.3) can be written as 
the following: 

                          
( , )d

( )
( , )d

yq x y y
s x

q x y y








 


.                          (5.3.5) 

For a little of further handling, we put 

(2, , , ) ( , )d dH n q x y x y
 

 
   .                   (5.3.6) 

and call (2, , , )H n    an H-function with parameter (2, , , )n   , where 
parameter 2 denotes that integral kernel ( , )q x y in (5.3.5) is bivariate 
function, parameter n represents the number of rules of reasoning in 
(5.2.1) used in process of construction of ( , )q x y , parameter   depends 
on fuzzy implication operator and parameter   denotes a triangular 
conorm used in relation synthesis. It is evident that 

 
1

(2, , , ) ( ), ( ) d d
i i

n

A BX Y i
H n x y x y   



       .          (5.3.7) 

When X andY are all intervals, e.g., [ , ]X a b  and [ , ]Y c d , for dis-
tinct fuzzy implication operators [1,5,14-17,20,21]  , it is an interesting prob-
lem of mathematical analysis how to resolve and find the integral 

 
1

(2, , , ) ( ), ( ) d d
i i

nb d

A Ba c i
H n x y x y   



       . 
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This is similar to the well-known special functions such as  function 
and  function, etc., as the following: 

11 - 1 1

0 0
( ) e d , ( , ) (1 ) dxx x x x x    

          

Remark 5.3.1  In (5.3.7), replacing operator of relation synthesis with 
general triangular co-norm  , we obtain a general expression of  
H-functions: 

 
1

(2, , , ) ( ), ( ) d d
i i

n

A BX Y i
H n x y x y   



       .         (5.3.8) 

In particular, when    , [ , ]X a b  and [ , ]Y c d , and 

2 : [0,1] [0,1], ( , ) ( , )u v u v u v       , 

we have the following expression: 

 
1

(2, , , ) ( ), ( ) d d
i i

nb d

A Ba c i
H n x y x y  



        .            (5.3.9) 

This has some good analytical properties and it is easy to find its integral 
quantity. Notice that “ ” in (5.3.9) is a binary operation and so the  

binary function  
1

( ), ( )
i i

n

A Bi
x y  


  must be calculated one by one, but 

it does not need to add brackets, since the associative law is satisfied. 
Knowing “normalization” handling of integral kernel ( , )q x y  that will 
be made below, it is not difficult to understand the farther broadening of 
bounded sum “ ” to ordinary sum “+”, i.e.,       

 
1

(2, , , ) ( ), ( ) d d
i i

nb d

A Ba c
i

H n x y x y 


      
  .         (5.3.10) 

This has better analytical properties naturally.                                          

The purpose of introduction of H  functions is no more than normali-
zation. If (2, , , ) 0H n    , then we can put 
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( , ) ( , ) (2, , , )f x y q x y H n                      (5.3.11) 

It is easy to see that (5.3.5) changes again to the following: 

                           
( , )d

( )
( , )d

yf x y y
s x

f x y y








 


.                          (5.3.12) 

Then any careful reader can find that (5.3.12) is awfully similar to  
conditional mathematical expectation in probability theory, and the real 
circumstance is so indeed. 

Theorem 5.3.1 Given a single-input single-output fuzzy system, the  
related notations are same as described above. Select and fix a fuzzy  
implication operator  . If the following conditions are satisfied 

| | ( , )d , 0 ( , )d
Y Y

y p x y y p x y y       

then there must exist a probability space ( , , )P   and a random vec-
tor ( , )  defined on it such that 

( | ) ( )E x s x    ,                             (5.3.13) 

i.e., functional value ( )s x  of function s  at x  equals to conditional 
mathematical expectation ( | )E x    of random variable   under 
condition of random variable x  . 

Proof.  With input universe X  and output universe Y  for basic sets, we 
construct two probability spaces  1, ,X P and  2, ,Y P , where  

and   are two Borel  -fields on X and Y , respectively, and 1P  and 

2P  are probability measures on   and  , respectively. Suppose that 
  and   are random variables defined on X  and Y , respectively. Be-
low, we confirm probability distribution of random vector ( , )  .  

Actually, put X Y  ,       and 1 2P P P , where   
indicates Borel  -field generated by Cartesian product of  Borel  -
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fields   and  , and P  is well-known product probability measure. 
Then we obtain joint probability space ( , , )P  . With same notations, 
redefine   and   as random variables on  : 

: , ( , ) ( , ) ( ),
: , ( , ) ( , ) ( )

x y x y x
x y x y y

  
  





  
  

 

Thus ( , )   turns into a two-dimensional random vector on joint proba-
bility space ( , , )P  . By hypothetic condition, the function 

( , ) ( , ) (2, , , )f x y q x y H n    

defined by (5.3.11) satisfies condition to be a probability density function 
of two-dimensional random vector. Hence we choose ( , )f x y for proba-
bility density function of random vector ( , )  , and so (5.3.12) just be-
comes to conditional mathematical expectation of random variable   
under condition of random variable x  , i.e., 

   
( , )d

( | ) ,
( , )d

yf x y y
E x

f x y y
 








  


                     (5.3.14)                     

This shows that ( | ) ( )E x s x    .                                                       

Remark 5.3.2  By (5.3.3), we can see that for practical computation  
of ( | )E x    it suffices to use the following expression:     

( , )d
( | )

( , )d
Y

Y

yp x y y
E x

p x y y
    


.                        (5.3.15) 

  

Remark 5.3.3  For convenience, we make up marginal probability  
density functions, i.e., density function ( )f x  of   and density func-

tion ( )f y  of   by using probability density function ( , )f x y : 
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                   ( ) ( , )df x f x y y




  ,                         (5.3.16) 

                       ( ) ( , )df y f x y x




  .                         (5.3.17) 

When ( ) 0f x  , we can also obtain conditional probability density 
function | ( | )xf y x    of   under x   as the following: 

| ( | ) ( , ) ( )xf y x f x y f x    .                      (5.3.18) 

Thus (5.3.15) is simply represented as follows: 

                      |( | ) ( | )dxE x yf y x y  



   .                 (5.3.19) 

  

Remark 5.3.4  Using ( , )f x y , we immediately obtain probability dis-
tribution function of random vector ( , )  :      

           ( , ) ( , ) ( , )d d
x y

F x y P x y f u v u v 
 

     .         (5.3.20) 

Hereby we can also obtain marginal probability distribution functions, 
i.e., distribution function ( )F x  of   and distribution function ( )F y   
of  : 

      
( ) ( , )

( , )d d ( )d ,
x x

F x F x

f u v v u f u u







  

 

   
             (5.3.21) 

   
( ) ( , )

( , )d d ( )d .
y y

F y F y

f u v u v f v v







  

 

   
               5.3.22) 

This implies that if only have probability density function ( , )f x y  we 
can easily understand the whole probabilistic information of random vec-
tor ( , )   or the fuzzy system.                                                                  
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Remark 5.3.5  For the below demands, we need the tool of conditional 
variance, denoted by ( | )D x   , as well, that is 

    2
|( | ) ( | ) ( | )dxD x y E x f y x y    




   .     (5.3.23) 

  

Remark 5.3.6  Using ( | )E x   , we make a function, denoted by 
( )g  , of random variable   that is determined as the following: 

                         ( ) ( | )g E   ,                             (5.3.24) 

Of course, ( )g   is also a random variable, but it must satisfy the follow-
ing two conditions: 

1)  If { | ( ) }x      , then we have 

( ) ( | ) ( | )g E E x      ; 

2)     ( ) ( | ) | ( ) ( | ( ) )A E E A E A           , 

where   is one-dimensional Borel  -field. In fact, ( | )E    is the uni-
fied expression of ( | )E x    for all x X  and we call it conditional 
mathematical expectation of   with respect to  . Observe that for any a 
given point x X , if { | }x     , then we have 

( ) ( | ) ( | ) ( ) ( )s x E x E g g x         .           (5.3.25) 

This implies that two functions s  and g  coincide, i.e., s g . Besides, 
for random vector ( , )  , if 2( | )E    exists, then we may use ( | )E  
to give the unified expression of conditional variance:  

  2( | ) ( | )D E E      . 

We call it conditional variance of   with respect to  . Obviously,  



  Probability Representations of Fuzzy Systems 147 
 

   22( | ) ( | )D E E       .                              

With explanations in Remarks 5.3.2 to 5.3.6, we can give a more fine 
and detailed probability interpretation related to fuzzy systems by means 
of ( | )E   . For an uncertain system, input quantity x X  and output 
quantity y Y  should be considered as two random variables   and 
that depend on each other. To find functional relationship ( )s x  between
x  and y  corresponds to searching a Borel measurable function in which
  and   depend on each other, and this function ought to coincide with

( )y s x , i.e., ( )s  . We want to determine a Borel measurable 
function ( )s   so that   and ( )s   are closed up to the best, and s  may 

be approximation to s , where the existence of  2E   and  2( )E s  
 

are assumed. The “closeness” herein needs a criterion, and the most 
commonly used one is “least squares method”. Then we have to demand       

                       2 2( ) inf ( )E s E


             ,             (5.3.26) 

where   varies in a kind of space of Borel measurable functions. To 
prove (5.3.26) is equivalent to proving that for any above-described 
Borel measurable function   it holds that 

   2 2( ) ( )E s E             . 

In fact, we easily understand the following equation: 

 

    
   

  

2

2

2 2

( )

( | ) ( | ) ( )

= ( | ) ( | ) ( )

  2 ( | ) ( | ) ( ) .

E

E E E

E E E E

E E E

  

      

      

      

  

     

        
    

 



148 Fuzzy Systems to Quantum Mechanics 
 
Obviously, we have the following equation: 

  ( | ) ( | ) ( ) 0E E E           , 

and so we get the following inequality: 

     

   

2 2 2

2 2

( ) ( | ) ( | ) ( )

( | ) ( ) .

E E E E E

E E E s

         

    

              
         

 

This shows that random variable ( )s   is the optimal approximation in 
mean square to random variable  . 

Remark 5.3.7  We can also use conditional variance ( | )D x   to  
interpret that ( )s   is the optimal approximation in mean square to . 
Actually, there is a property about mathematical expectation and variance 
in probability theory: For any random variable , it is certain that   

    2[ ]c c E D E c        , 

i.e., function 2( ) [ ]f c E c   takes the least value at c E  as the 
following: 

2( ) [ ]f E E E D      . 

And then for any above-described Borel measurable function ,   

 

 

22

2
|

[( ( )) ] ( ) ( , )d d

( ) ( ) ( | )d d .x

E y x f x y x y

f x y x f y x y x  

   



 

 

 

 

  

    

 

 
 

When ( ) ( | )x E x    , we have the following expression: 
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2
|

2
|

( ) ( | )d

= ( | ) ( | )d ( | ).

x

x

y x f y x y

y E x f y x y D x

 

 



   











   




 

So  2
|( ) ( | )d  xy x f y x y 




 reaches the least value ( | )D x  

here. Again, since ( ) 0f x  , ( ) ( | )s x E x    also brings about that

 2( )E       arrives at the least value ( ) ( | )df x D x x  



 .    

Based on the above discussions, we get hold of a conclusion:  
The function ( )s x  obtained by COG method is optimal approxima- 
tion to ( )s x  in the sense of least squares, accordingly COG method is 
reasonable. 

Besides, just with COG method, we have communicated relation be-
tween fuzzy systems and probability theory. From the viewpoint of 
methodology, in a certain bound, we may use the method of probability 
theory to investigate fuzzy systems. This is good certainly. From the 
viewpoint of philosophy, uncertainty originally contains randomness as 
well as fuzziness, and randomness and fuzziness are often interwoven, so 
it is very difficult to divide up them. 

5.4   Several Typical Probability Distributions 

We return to and consider (5.3.11) again. It is expanded as   

 

 
1

1

( , )( , )( , ) =
(2, , , ) (2, , , )

( ), ( )
          .

( ), ( ) d d

i i

i i

X Y

n

A B X Yi

n

A BX Y i

p x yp x yf x y
H n H n

x y

x y x y


 

   

  








 

   
    

             (5.4.1) 

We can discover two aspects of phenomena or contexts or meanings: 
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1)  From the viewpoint of probability theory, the probability density 
function ( , )f x y  is the core of fuzzy system and serves as “inner kernel 
of system”. This shows that a fuzzy system is a stochastic system in na-
ture, and this is the rational thinking. Certainly, there is also no lack of 
worth of handling. For instance, for an uncertain system, if one predomi-
nates probability distribution function ( , )F x y  or probability density 
function ( , )f x y  of random vector ( , )   by method of probabilistic 
statistics then one can obtain ( ) ( | )s x E x   , namely, understand 
system. 

2) From the viewpoint of constructivity based on fuzzy reasoning, the 
above-described process of construction of fuzzy system, more precisely, 
from (5.2.1) to (5.2.11), has determined probability distribution of an 
uncertain system. In (5.4.1), choosing different fuzzy implication opera-
tors, we obtain distinct probability density functions and consequently 
produce diverse probability distributions. Thereby, we can also enrich 
capability of uncertain systems.  

References [14-17] have carried through detailed textual research to-
ward construction of fuzzy implication operators. Below, with several 
typical implication operators for examples, we obtain some typical prob-
ability distributions that are used commonly in fuzzy systems. 

Example 5.4.1  In (5.4.1), putting [14 17]
13   , i.e.,  

  2
13( , ) [0,1] ( , )a b a b a b   , 

we have the following expression: 

 
 

 
131

1

( , ) ( ), ( )

           ( ) ( )

i i

i i

n

A Bi
n

A Bi

p x y x y

x y

  

 





 

  
                       (5.4.2) 

If  132, , , 0H n    , then we can let 
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1

( , )( , )
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( ) ( ) d d
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i i

X Y

n

A B X Yi

n

A BX Y i

p x yf x y
H n

x y

x y x y




  

 









    
     



                 (5.4.3) 

Since 13  is called Mamdani operator, the probability distribution with 
(5.4.3) for probability density function is called Mamdani distribu- 
tion with parameter (2, , )n   and denoted by Mam(2, , )n  , in other 
words, we use ( , ) Mam(2, , )n   , i.e. random vector ( , )   obeys 
Mam(2, , )n  . Its marginal probability density functions are as follows: 
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n
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n

A BX Y i
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                (5.4.4) 
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                (5.4.5) 

respectively. When ( ) 0f x  and  ( ) 0f y  , the conditional probability 

density functions are as the following: 
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|

1

1

( , )( , )( | )
( ) ( , ) d

( ) ( )
,

( ) ( ) d

i i

i i

X Y
x

XY

n

A B X Yi

n
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                    (5.4.6) 

|
( , )( , )( | )

( ) ( , ) d
X Y

y
YX

p x yf x yf x y
f y p x y x 
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A B X Yi

n

A B YX i

x y

x y x

  

  





    
    

                   (5.4.7) 

respectively.  

By these probability density functions, we immediately obtain distri-
bution function, marginal distribution function, conditional mathematical 
expectation and conditional variance:   
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            (5.4.8) 
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          (5.4.9) 
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        (5.4.10) 
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             (5.4.11) 

 2
|( | ) ( | ) ( | )d .xD x y E x f y x y    




           (5.4.12) 

Above equations are very useful.                                                              
 
Example 5.4.2   In (5.4.1), putting [14 17]

8   , i.e., 

  2
8( , ) [0,1] ( , ) (1 ) ( )a b a b a a b     , 

we have the following results: 
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             (5.4.13)
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    (5.4.14) 

where  82, , , 0H n    is assumed.  

Since 8  is called Zadeh operator, the probability distribution with 
(5.4.14) for probability density function is called Zadeh distribution with 
parameter (2, , )n  and denoted by Zad(2, , )n  , in other words, we can 
use the following symbol: 

( , ) Zad(2, , )n   , 

i.e., random vector ( , )   obeys Zad(2, , )n  . Similarly to Example 
5.4.1, we can give its distribution function, marginal distribution func-
tion, conditional mathematical expectation and conditional variance.      

Example 5.4.3   In (5.4.1), putting [14 17]
3   , i.e., 

 2
3

1,
( , ) [0,1] ( , )

1 ,
a b

a b a b
a b a b


  

      
  

we have the following results: 
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1,            ( ) ( ) ,

1 ( ) ( ) , otherwise,
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             (5.4.15) 
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       (5.4.16) 

where 3(2, , , ) 0H n     is assumed.  
Since 3 is called Lukasiewicz operator, the probability distribution 

with (5.4.16) for probability density function is called Lukasiewicz dis-
tribution with parameter (2, , )n   and denoted by Luk(2, , )n  , in other 
words, we have the following form: 

( , ) Luk(2, , )n   , 

i.e., random vector ( , )   obeys Luk(2, , )n  . Moreover, we can see 
from (5.4.16) that Lukasiewicz distribution has property of uniform dis-
tribution on the local region as the following: 

    ( , ) ( ) ( )
i iA Bx y i x y      .                     

Example 5.4.4   In (5.4.1), putting [14 17]
5   , i.e., 

 2
5

1,  
( , ) [0,1] ( , )

,  
a b

a b a b
b a b


  

    
  

we have the following expressions: 
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             (5.4.17) 

 

    

    

5

( ) ( )

1
\ ( ) ( )

( , )( , )
2, , ,

1 ( , )
( , )d d

( )
,

( , )d d

A Bi i

i

A Bi i

X Y

i x y
X Y

n

Bi
X Y i x y

X Y

p x yf x y
H n

x y
p x y x y

y

p x y x y

 

 











 


  









 

 

           (5.4.18) 

where  52, , , 0H n     is assumed. Since 5  is called Gödel operator, 

the probability distribution with (5.4.18) for probability density function 
is called Gödel distribution with parameter (2, , )n  and denoted by
God(2, , )n  , in other words, ( , ) God(2, , )n   , i.e., random vec-
tor ( , )   obeys God(2, , )n  . Moreover, we can see from (5.4.18) that 
Gödel distribution has property of uniform distribution on the local  
region: 

    ( , ) ( ) ( )
i iA Bx y i x y      .                       

Example 5.4.5   In (5.4.1), putting [14 17]
6   , i.e., 

 2
6

(1 ) , (1 ) 0
( , ) [0,1] ( , )

1, otherwise
a b a b

a b a b
      

   
 

  

we have the following expressions: 
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            (5.4.19) 
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1 ( ) ( )

( , )d d

A Bi i

i i

A Bi i

X Y

i x y
X Y

n

A Bi
X Y i x y

X Y

p x yf x y
H n

x y
p x y x y

x y
I

p x y x y

 

 






 



   



    






    

 

 

    (5.4.20) 

where  62, , , 0H n     is assumed.  

Since 6  is called Dubois-Prade operator, the probability distribution 
with (5.4.20) for probability density function is called Dubois-Prade dis-
tribution with parameter (2, , )n   and denoted by DP(2, , )n  , in other 
words, ( , ) DP(2, , )n   , that is, the random vector ( , )   must obey 
DP(2, , )n  . Moreover, we can see from (5.4.20) that Dubois-Prade dis-
tribution has property of uniform distribution on the local region: 

     ( , ) 1 ( ) ( ) 0
i iA Bx y i x y        .                

Example 5.4.6   In (5.4.1), putting [14 17]
4   , i.e., 

   
2

4

1,   0
( , ) [0,1] ( , )

1, 0
a

a b a b
b a a


        

  

we have the following results: 
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41

1

( , ) ( ), ( )

1,            ( ) 0 ,

( )
1 , otherwise,

( )

i i

i

i

i

n

A Bi

A

n B

i
A

p x y x y

i x

y
x

  










 

  
  
      

                  (5.4.21) 

 

    

    

4

( ) 0

1

\ ( ) 0

( , )( , )
2, , ,

1 ( , )
( , )d d

( )
1

( )
  ,

( , )d d

Ai

i

i

Ai

X Y

i x
X Y

n
B

i
A

X Y i x
X Y

p x yf x y
H n

x y
p x y x y

y
x

p x y x y

















 



  






 
   
 

 

 

             (5.4.22) 

where  42, , , 0H n     is assumed.  

Since 4 is called Goguen operator, the probability distribution with 
(5.4.22) for probability density function is called Goguen distribution 
with parameter (2, , )n   and denoted by Gog(2, , )n  , in other words, 
random vector ( , )   obeys Gog(2, , )n  , i.e., ( , ) Gog(2, , )n   . 
Moreover, we can easily see from (5.4.22) that Goguen distribution has 
property of uniform distribution on the local region as the following: 

    ( , ) ( ) 0
iAx y i x     .                           

Example 5.4.7   In (5.4.1), putting [14 17,20,21]
0   , i.e.,  

 2
0

1,      
( , ) [0,1] ( , )

(1 ) ,
a b

a b a b
a b a b


  

      
 , 

we have the following expressions: 
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01

1

( , ) ( ), ( )

1,                     ( ) ( ) ,

1 ( ) ( ) , otherwise,

i i

i i

i i

n

A Bi

A B

n

A Bi

p x y x y

i x y

x y

  

 

 





 

  
 

    

               (5.4.23) 

 

    

 
    

0

( ) ( )

1
\ ( ) ( )

( , )( , )
2, , ,

1 ( , )          
( , )d d

1 ( ) ( )
,

( , )d d

A Bi i

i i

A Bi i

X Y

i x y
X Y

n

A Bi
X Y i x y

X Y

p x yf x y
H n

x y
p x y x y

x y

p x y x y

 

 






 




 


  






    

 

 

     (5.4.24) 

where  02, , , 0H n    is assumed.  

Since 0  was proposed by G. J. Wang in [20,21], we call 0  the Wang 
operator. And probability distribution with (5.4.24) for probability densi-
ty function is called Wang distribution with parameter (2, , )n   and de-
noted by Wang(2, , )n  , in other words, ( , ) Wang(2, , )n   , i.e., 
random vector ( , )   obeys the probability distribution Wang(2, , )n  . 
Moreover, we can easily see from (5.4.24) that Wang distribution has 
property of uniform distribution on the local region as the following: 

    ( , ) ( ) ( )
i iA Bx y i x y      .                      

Example 5.4.8   In (5.4.1), putting 27   and [14 17]
28   , i.e.,  

 

 

2
27

2
28

( , ) [0,1] ( , ) ,
1 (1 )(1 )

( , ) [0,1] ( , )
1

aba b a b
a b

a ba b a b
ab
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we have the following results: 

          
 

  

271

1

( , ) ( ), ( )

( ) ( )
,

1 1 ( ) 1 ( )

i i

i i

i i

n

A Bi

n A B

i
A B

p x y x y

x y

x x

  

 

 





 

 
  

                  (5.4.25) 

           
 281

1

( , ) ( ), ( )

( ) ( )
           ,

1 ( ) ( )

i i

i i

i i

n

A Bi

n A B

i
A B

p x y x y

x y
x y

  

 
 





 


 



                 (5.4.26) 

           

 

  

27

1

( , )( , )
2, , ,

( ) ( )
1 1 ( ) 1 ( )

,
( , )d d

i i

i i

X Y

n
A B

X Yi
A B

X Y

p x yf x y
H n

x y
x x

p x y x y




 


 








 
 

    
 

        (5.4.27) 

           

 28

1

( , )( , )
2, , ,

( ) ( )
1 ( ) ( )

,
( , )d d

i i

i i

X Y

n
A B

X Yi
A B

X Y

p x yf x y
H n

x y
x y

p x y x y




 


 








 
 

  
 

                (5.4.28) 

where 27(2, , , ) 0H n     and 28(2, , , ) 0H n     are assumed.  
Since 27  and 28  are called Einstein meet operator and Einstein union 

operator, respectively, the probability distributions with (5.4.27) and 
(5.4.28) for probability density functions are called Einstein meet dis-
tribution and Einstein union distribution with parameter (2, , )n  and de-
noted by Einm(2, , )n  and Einu(2, , )n  , respectively; in other words, 



  Probability Representations of Fuzzy Systems 161 
 
we have that ( , ) Einm(2, , )n   or ( , ) Einu(2, , )n   , i.e., ran-
dom vector ( , )   obeys Einm(2, , )n   or Einu(2, , )n  .                     

Example 5.4.9   In (5.4.1), putting [14 17]
14   , i.e., 

  2
14( , ) [0,1] ( , )a b a b a b   , 

we have the following expression: 

   141 1
( , ) ( ), ( ) ( ) ( ) .

i i i i

n n

A B A Bi i
p x y x y x y    

 
        (5.4.29) 

If 14(2, , , ) 0H n    , then we let 

 

 

14

1

1

( , )( , )
(2, , , )

( ) ( )
,

( ) ( ) d d

i i

i i

X Y

n

A B X Yi

n

A BX Y i

p x yf x y
H n

x y

x y x y




  

 









    
     



              (5.4.30) 

Since 14  is called Larsen operator, the probability distribution with 
(5.4.30) for probability density function is called Larsen distribution with 
parameter (2, , )n   and denoted by Lar(2, , )n  , in other words, we 
have the following expression: 

( , ) Lar(2, , )n   , 

i.e., random vector ( , )   obeys Lar(2, , )n  .                                         

5.5   Probability Representations of Double-input and  
Single-output Fuzzy Systems 

Suppose that 1,X Y   are the universes of input variables and 1Z   
is universe of output variable, where 1  is one-dimensional Borel -
field. And we let  



162 Fuzzy Systems to Quantum Mechanics 
 

     1 , 1 , 1i i iA i n B i n C i n            

be the classes of fuzzy sets on , ,X Y Z , respectively. Considering  ,  
and   as linguistic variables, we form n  rules of fuzzy reasoning:  

If x  is iA  and y  is iB  then z  is iC , 1, ,i n  .         (5.5.1)   

Putting the following expression: 

  , 1i iA B i n      , 

we can make a mapping sas follows:   

        
   : , , , ,

1, 2, , .
i i i i is A B s A B C

i n

 

 

  
              (5.5.2) 

Remark 5.5.1  At the first time, it is apparent that group (5.5.1) of rules of 
fuzzy reasoning is not “completed” and so-called “completed” expression 
must be shown as follows:   

If x  is iA  and y  is jB  then z  is ijC ,  
1, 2, , , 12, ,i n j m     

However, two expression methods of this expression and (5.5.1) are 
equivalent, i.e., they are translatable into each other. For detailed proof, 
see [6]. Since the expression method of (5.5.1) is simple and convenient 
to handle, we always use it to write group of rules of multi-input multi-
output fuzzy reasoning.                                                                              

In (5.5.1), fuzzy relation of reasoning (( ) )iR X Y Z    formed 
by and related to the i  th rule is also determined by a certain implica-
tion operator 2:[0,1] [0,1]   as follows:   

 ( , , ) ( ) ( ), ( )
i i i iR A B Cx y z x y z     ,                (5.5.3) 
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where ( ) ( )

i iA Bx y   is a logical expression of “ x  is iA  and y  is 

iB ” in (5.5.1). Thus total relation of reasoning for group (5.5.1) of rules 

of reasoning is 
1

n

i
i

R R


 . We use “ ” for a while to realize “ ”, i.e.,  

 
1

1

( , , ) ( , , )

( ) ( ), ( )

i

i i i

n

R Ri
n

A B Ci

x y z x y z

x y z

 

   





 

  
                      (5.5.4) 

For any given ( , ) ( ) ( )A B X Y   , we can obtain result of reason-
ing ( )C Z  through R . This can be yet realized by use of a fuzzy 
transformation “ ”:       

           
: ( ) ( ) ( )

( , ) ( , ) ( ) ,
X Y Z

A B C A B A B R
 

 


   

  
              (5.5.5) 

where the fuzzy set A B  denotes the Cartesian product of the fuzzy 
sets A  and B , i.e., ( )A B X Y    and is defined by the follows: 

  ( , ) ( , ) ( ) ( )A B A Bx y X Y x y x y      .        (5.5.6) 

It is not difficult to understand that ( , )A B x y   is just the set representa-
tion of logical sentence “ x  is iA  and y  is iB ”. Here we also use basic 
operations ( , )   to state the form of membership function of (5.5.5):   

 
( , )

( ) ( ) ( ) ( , , )C A B Rx y X Y
z x y x y z   

 
      .       (5.5.7) 

Thus we obtain a function s  as follows:   

: ( ) ( ) ( )
( , ) ( , ) ( ) .
s X Y Z
A B C s A B A B R





 

   
  

                (5.5.8) 
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For any given  ,x y X Y    , in order to use (5.5.7), we first do the 
fuzzification on ( , )x y  , i.e., make singleton fuzzy sets A  and B  of x
and y , respectively (refer to (5.2.8)). And substituting them into (5.5.8), 
we obtain result of reasoning ( )C Z  as follows:   

 

    
1

( ) , ,

, ( ) .
i i i

C R

n

A B Ci

z x y z

x y z

 

   





 

   
                  (5.5.9) 

If  the following conditions are satisfied 

| | ( )d , 0 ( )d ,C CZ Z
z z z z z         

then to do the defuzzification on C  by COG method, we can obtain  
exact output z  as follows:   

( )d

( )d
CZ

CZ

z z z
z

z z








 


. 

In this way, we have a function :s X Y Z  , where   

( )d
( , )

( )d
CZ

CZ

z z z
s x y

z z








 


.                          (5.5.10) 

As preceding analysis, ( )C z  and  ,x y   depend on each other.  

Actually we should give the following symbol: 

 ,C x x y y C      . 

Because  ,x y   is arbitrarily chosen in X Y , we can use ( , )x y   

instead of  ,x y  . Therefore, we can also write it as form of a ternary 
function as being :p X Y Z   , without further ado:   
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1

( , , ) ( ) ( , , )

( ) ( ), ( )
i i i

C R
n

A B Ci

p x y z z x y z

x y z

 

   




  


                 (5.5.11) 

And then (5.5.10) can change to the following equation: 

( , , )d
( , )

( , , )d
Z

Z

zp x y z z
s x y

p x y z z
 


.                       (5.5.12) 

Similarly to (5.3.4), expand domain of definition of p  onto 3  and 
denote ( , , ) ( , , ) X Y Zq x y z p x y z    . Then (5.5.12) also changes to    

( , , )d
( , )

( , , )d

zq x y z z
s x y

q x y z z








 


 .                     (5.5.13) 

Note that, according to preceding explanation, the function ( , )s x y  and 
the function ( , ) ( , )X Ys x y x y  are the same. For normalization, let   

(3, , , ) ( , , )d d d
X Y Z

H n p x y z x y z     .                (5.5.14) 

If (3, , , ) 0H n    , then put again 

( , , ) ( , , )( , , )
(3, , , )

X Y Zp x y z x y zf x y z
H n



 


                  (5.5.15) 

By (5.5.13), it is evident that     

( , , )d
( , )

( , , )d

zf x y z z
s x y

f x y z z








 


.                         (5.5.16) 

Theorem 5.5.1  Given a double-input single-output fuzzy system, the 
related notations are same as described above. Select and fix a fuzzy  
implication operator  . If the following conditions are satisfied 
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| | ( , , )dz , 0 ( , , )d ,
Z Z

z p x y z p x y z z       

then there must exist a probability space ( , , )P   and a random  
vector ( , , )    defined on it such that   

( | , ) ( , )E x y s x y     ,                         (5.5.17) 

i.e., functional value ( , )s x y  of the function s  at ( , )x y  equals to con-
ditional mathematical expectation ( | , )E x y     of random varia-
ble   under condition of random vector ( , ) ( , )x y   . 

Proof.  Let  1 1, ,X P ,  2 2, ,Y P  and  3 3, ,Z P  be three probabil-

ity spaces, where 1 , 2  and 3  are Borel  -fields on ,X Y  and Z , 
respectively, and 1 2,P P  and 3P  are probability measures on 1 , 2 and 

3 , respectively. Suppose that ,   and   are random variables defined 
on ,X Y  and Z , respectively.  

Taking X Y Z   , 1 2 3      and 1 2 3P P P P  , we 
obtain joint probability space ( , , )P  . With same notations, we can 
redefine ,   and   as random variables on  :      

: , ( , , ) ( , , ) ( ),
: , ( , , ) ( , , ) ( ),
: , ( , , ) ( , , ) ( ).

u v w u v w u
u v w u v w v
u v w u v w w

  
  
  







  
  
  

 

Then we obtain a three-dimensional random vector ( , , )    defined on
( , , )P  . We can consider ( , , )f x y z  as the probability density func-
tion of ( , , )   . By definition of conditional mathematical expectation, 
we see that (5.5.16) just becomes to conditional mathematical expecta-
tion of random variable   under the condition ( , ) ( , )x y   , i.e.,   

( , , )d
( | , )

( , , )d

zf x y z z
E x y

f x y z z
  








   


.                   (5.5.18) 
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This shows that ( | , ) ( , )E x y s x y     .                                        

Remark 5.5.2  By probability density function ( , , )f x y z , we can make 
up conditional probability density function  as follows: 

|( , ) ( , )
( , , )( | , )
( , , )d

( , , )                        .
( , , ) d

x y

X Y Z

X YZ

f x y zf z x y
f x y z z

p x y z
p x y z z

  




 



 











               (5.5.19) 

Then (5.5.18) and conditional variance can be shortened as   

|( , ) ( , )

( | , ) ( , )

( | , )d

( , , ) d
,

( , , ) d

x y

X Y Z

X YZ

E x y s x y

zf z x y z

zp x y z z

p x y z z

  

  











 



  









                      (5.5.20) 

 

 

2
|( , ) ( , )

2

( | , )

( | , ) ( | , )d

( | , ) ( , , ) d

( , , ) d

x y

X Y Z

X YZ

D x y

z E x y f z x y z

z E x y p x y z z

p x y z z

  

  

  

   









 



 

  

  







       (5.5.21) 

Clearly the probability distribution function of random vector ( , , )    
is as the following expression: 

( , , ) ( , , )

( , , )d d d .
x y z

F x y z P x y z

f u v w u v w

  

  

  

   


                (5.5.22) 

Besides, it is not difficult to write out every marginal density function 
and marginal distribution function.                                                           
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Example 5.5.1  In (5.5.12), taking   being Mamdani operator, Zadeh 
operator, Lukasiewicz operator, Gödel operator, Dubois-Prade operator, 
Goguen operator, Wang operator, Einstein meet operator, Einstein union 
operator and Larsen operator, respectively, we immediately obtain vari-
ous typical probability distributions of concerned double-input single-
output fuzzy systems, i.e., Mamdani distribution, Zadeh distribution, 
Lukasiewicz distribution, Gödel distribution, Dubois-Prade distribution, 
Goguen distribution, Wang distribution, Einstein meet distribution,  
Einstein union distribution and Larsen distribution. In order to give a 
demonstration, put again [14 17]

2   , that is Reichenbach operator as 
follows: 

  2
2( , ) [0,1] ( , ) 1a b a b a ab    . 

Then we have the following expressions: 

 
   

21

1

( , , ) ( ) ( ), ( )

1 ( ) ( ) ( ) ( ) ( ) ,

i i i

i i i i i

n

A B Ci
n

A B A B Ci

p x y z x y z

x y x y z

   

    





  

       

  (5.5.23) 

 2

( , , )( , , ) ,
3, , ,

X Y Zp x y zf x y z
H n




 


                     (5.5.24) 

where 2(3, , , ) 0H n     is assumed. The probability distribution with 
(5.5.24) for probability density function is called Reichenbach distribu-
tion with parameter (3, , )n   and denoted by Rei(3, , )n  , in other 
words, ( , , ) Rei(3, , )n    , i.e., the random vector ( , , )    obeys 
the probability distribution Rei(3, , )n  .                                                  

5.6 The Probability Representations of Multi-input Multi-output 
Fuzzy Systems 

Consider a fuzzy system with p  inputs and q  outputs. Suppose that the 

sets 1
iX   are universes of input variables and 1

jY   are universes 
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of output variables where 1,2, , , 1,2, ,i p j q    . And let  

 
 

1 , 1,2, , ,

1 , 1, 2, ,

i ki

j kj

A k n i p

B k n j q

    

    




 

be classes of fuzzy sets on ( 1,2, , )iX i p   and ( 1, 2, , )jY j q  , 

respectively. Considering i  and j  as linguistic variables, we form n
rules of fuzzy reasoning as follows:     

If 1x  is 1kA  and 2x  is 2kA  and     and px  is kpA   

then 1y  is 1kB  and 2y  is 2kB  and     and qy  is kqB ,         (5.6.1) 

where 1,2, ,k n  . If we put 

  1 2
1

, , , 1
p

k k kp i
i

A A A k n


      , 

then we can make the mappings ( 1,2, , )js j q    as follows:   

          
   1 2 1 2

:

, , , , , ,
j j

k k kp j k k kp kj

s

A A A s A A A B







  

 
           (5.6.2) 

Remark 5.6.1  Here the group (5.6.1) of rules of fuzzy reasoning is also 
simple expression as described in Remark 5.5.1. See Remark 5.5.1 and 
[6] for the reason.                                                                                       

In (5.6.1), the k  th rule can form q  fuzzy relations of fuzzy reason-
ing are expressed by the following: 

1
,

1, 2, ,

p

kj i j
i

R X Y

j q


  
   

  
 


 

by means of a certain fuzzy implication operator  : 
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     1 2 1
, , , , ,

kj ki kj

p

R p j A i B ji
x x x y x y   



   
 

          (5.6.3) 

Then we can obtain the total fuzzy relation of the fuzzy reasoning as the 

equation 
1

n

j kj
k

R R


  about (5.6.1) for every index j ( 1,2, , )j q  , 

i.e.,   

     1 2 1 1
, , , , ,  

j ki kj

pn

R p j A i B jk i
x x x y x y   

 

     
 

      (5.6.4) 

If we denote the following set and mapping: 

  
 

1 2

1 2

, , , 1 ,

, , , ,

k k kq

q

B B B k n

s s s s   

  








 

then s  is a mapping from   to  , i.e.,  

     1 1 1

:

, , , , , , ,

1,2, , .
k kp k kp k kq

s

A A s A A B B

k n







   

 



 

          (5.6.5) 

For arbitrarily given  1 2
1

, , , ( )
p

p i
i

A A A X


   , we can obtain result 

of reasoning  j jB Y  through jR . This is also realized by fuzzy 

transformation “ ” as follows: 

   

   
1

1 1

1

:  

, , , ,

                           ,

p

i j
i

p j p

p

i j
i

X Y

A A B A A

A R







  

 
 
 







 

 

 

                    (5.6.6) 
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where 
1

p

i
i

A

  denotes Cartesian product of 1 2, , , pA A A   , i.e.,   

   
1

1 1

1 2 1

,

, , , ,p i
i

i

p p

i i
i i

p

p A iiA

A X

x x x x 


 



 
  

 

  


 

                     (5.6.7) 

which has such logical meaning as described before. The form of mem-
bership function of (5.6.6) becomes to the following equations: 

 

 
   

1
1

11
, ,

, , ,

j

p i j

p i
i

B j

p

A i R p ji
x x A

y

x x x y



 




 



         

          (5.6.8) 

Thus we obtain functions ( 1,2, , )js j q    as follows:   

   

   
1

1 1
1

:

, , , ,

p

j i j
i

p

p j j p i j
i

s X Y

A A B s A A A R











 
    

 



  

 
       (5.6.9) 

Putting  1 2, , , qs s s s      , we obtain a vector-valued function as the 

following: 

   

     
    

1 1

1 1 1

1 1 1

:

, , , , , ,

, , , , , ,

p q

i j
i j

p q p

p q p

s X Y

A A B B s A A

s A A s A A



 



 



   

       

 





 

       (5.6.10) 
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For any given  1 2
1

, , ,
p

p i
i

x x x X


      , considering ( 1,2, , )ix i p    

as singleton fuzzy sets ( 1,2, , )iA i p   , respectively (refer to (5.2.8)), 
and substituting them into (5.6.8), we can obtain the results of the fuzzy 
reasoning   ( 1, 2, , )j jB Y j q     as follows:  

   

   
1 2

1 1

, , , ,

            ,

j j

ki kj

B j R p j

pn

A B jk i

y x x x y

x y

 

  



 

   

    
 

               (5.6.11) 

If the following conditions are satisfied 

   | | d , 0 d
j j

j j
j B j j B j jY Y

y y y y y         

then we can obtain exact outputs jy  by doing defuzzification to jB  by 

COG method as the following:   

 
 

d
, 1,2, ,

d
j

j

j
j

j B j jY
j

B j jY

y y y
y j q

y y









  



                   (5.6.12) 

In this way, for every index j  we have a function 
1

:
p

j i j
i

s X Y


 , 

where  

 
 
 1 2

d
, , ,

d
j

j

j
j

j B j jY
j p

B j jY

y y y
s x x x

y y









   



                  (5.6.13) 

Again let  1 2, , , qs s s s   . Then s  is a vector-valued function from

1

p

i
i

X

  to 

1

q

j
j

Y

  as the follows:  
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      1 1 1 1, , , , , , , ,p p q ps x x s x x s x x                   (5.6.14) 

As known very well, since  
jB jy  and  1, , px x    depend on each other, 

we should denote 

 
     

1 1

1 1

, ,

, , ,

,
j p p

j p p j

j B jB x x x x

B x x x x B

y y      

     




 

and can write it as a ( 1)-aryp   function alike as described before: 

     

 

1

1 1

1 1

:

, , , , , ,

                          ,

j

ki kj

p

j i j
i

j p j B j R p j

pn

A B jk i

p X Y

p x x y y x x y

y

 

  





 

 
  

 

  

    
 

 

        (5.6.15) 

Then (5.6.13) can be written as the following: 

 
 
 

1

1
1

, , , d
, ,

, , , d
j

j

j j p j jY
j p

j p j jY

y p x x y y
s x x

p x x y y


 






            (5.6.16) 

Again expand domain of definition of jp  onto 1p  and denote  

   
1

1 1, , , , , , p

i j
i

j p j j p j
X Y

q x x y p x x y 


 
 
 
 

     


  

Then (5.6.16) becomes to the following equation: 

   
 

1
1

1

, , , d
, ,

, , , d

j j p j j
j p

j p j j

y q x x y y
s x x

q x x y y









 






            (5.6.17) 
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Also notice that  1, ,j ps x x    and  
1

1, , p

i
i

j p
X

s x x 





 are the same. 

Similarly to preceding analysis, although all of  1, , ,j p jp x x y    satisfy 

non-negativity, they do not necessarily possess normality and so need to 
handle. Now let   

 
1

1 1

( 1, , , )

, , , d d d
p j

j p j p jX X Y

H p n

p x x y x x y

 

                (5.6.18) 

If ( 1, , , ) 0H p n    , then we can put  

 
 

1

1

1

, , ,

, , ,
( 1, , , )

p

i j
i

j p j
X Y

j p j

p x x y

f x x y
H p n






 
 
 
 

  



 

 .        (5.6.19) 

In (5.6.17), to replace  1, , ,j p jq x x y    with  1, , ,j p jf x x y    does 

not change (5.6.17}), i.e.,  

   
 

1
1

1

, , , d
, ,

, , , d

j j p j j
j p

j p j j

y f x x y y
s x x

f x x y y









 






.           (5.6.20) 

Theorem 5.6.1  Given a multi-input multi-output fuzzy system, the re-
lated notations are same as described above. Select and fix a fuzzy impli-
cation operator  . If the following conditions are satisfied as follows: 

 
 

1 2

1 2

, , , , d ,

0 , , , , d ,
j

j

j j p j jY

j p j jY

y p x x x y y

p x x x y y

  

   




 

where 1,2 , ,j q ，  then there must exist a probability space 
( , , )P   and a vector-valued random vector ( , )   defined on it such 
that  
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: , :p q     

and vector-valued conditional mathematical expectation ( | )E   and
( )s  are the same, i.e., ( | ) ( )E s   , in other words, we have the 

following expression: 

 

   
1

1

1 1 1

, , ,

, , , , ,

p

p i
i

p p p

x x X

E x x s x x  


  

    


 

 where    1 2 1 2, , , , , , ,p q            and  

    1 1 1( | ) , , , , , ,p q pE E E                   (5.6.21) 

And ( )s   is unified expression of (6.14), i.e.,  

      1 1 1 1, , , , , , , ,p p q ps s s         .       (5.6.22) 

In more detail, for every {1, , }j q  , it holds that  

   1 1 1, , , , ,j p p j pE x x s x x                  (5.6.23) 

i.e., functional value  1, ,j ps x x    of function js  at  1, , px x    equals 

to conditional mathematical expectation  1 1, ,j p pE x x      of 

random variable j  under the condition of random vector as follows: 

   1 2 1 2, , , , , ,p px x x       . 

Proof.  Based on the input universes  ( 1, , )iX i p   and the output 
universes  ( 1, , )jY j q  , construct p q probability spaces as follows: 
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, , , 1, 2, , ,

, , , 1, 2, , ,

x x
i i i

y y
j j j

X P i p

Y P j q

 

  




 

where x
i  is Borel  -field on iX , and y

j  is Borel  -field on jY , and
x

iP  is probability measure on  x
i , and y

jP  is probability measure on
y

j . Suppose that i  and j  are random variables defined on iX  and

jY , respectively. Taking 

1 1 1
, ,

p p p
x y x y

j i j j i j j i j
i i i

X Y P P P
  

     
        

     
        , 

we can obtain q  joint probability spaces as the following: 

 , , , 1, 2, ,j j jP j q   . 

With same notations, we redefine  ( 1,2, , )i i p    as random variables 
on every space ( 1, 2, , )j j q    as follows:      

     1 1

:

, , , , , , ,
i j

p j i p j i iu u v u u v u



 

 

   
 

and we also redefine j  on only j  that has the same subscript j  as 

follows:   

     1 1

:

, , , , , ,
j j

p j j p j j ju u v u u v v



 

 

   
 

Thus we obtain 1p  dimensional random vector  1, , ,p j    de-

fined on  , , ( 1, , )j j jP j q   . Now we consider  1, , ,j p jf x x y  

in the equation (5.6.19) as a probability density function of the random 
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vector  1, , ,p j   . By definition of conditional mathematical expec-

tation, we can see that (5.6.20) is just conditional mathematical expecta-
tion of random vector  1, , ,p j   :   

   
 

1
1 1

1

, , , d
, ,

, , , d

j j p j j
j p p

j p j j

y f x x y y
E x x

f x x y y
  









   






, 

which means the following equation: 

   1 1 1, , , ,j p p j pE x x s x x        . 

Again using unified expression of conditional mathematical expectation, 
we have  the following expression: 

   1 1, , , ,j p j pE s        .                       (5.6.24) 

Finally, we define , , P   respectively as the following: 

1 1

1 1

1 1

,

,

.

p q

i j
i j

p q
x y

i j
i j

p q
x y

i j
i j

X Y

P P P

 

 

 

  
   

   
  

  
   

  
  

   

 

 

 







  

 

Then we obtain the total probability space ( , , )P  . By this, we can 
define a vector-valued random vector ( , ) : p q    as follows:  

      1 1 1 1

:

, , , , , ( ) , ,

p

p q p pu u v v u u



    



   



 
  (5.6.25) 
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      1 1 1 1

:

, , , , , ( ) , ,

q

p q q qu u v v v v



    



     



 
  (5.6.26) 

If we set the following symbol: 

    1 1 1( | ) , , , , , ,p q pE E E               

and notice Equation (5.6.22), it follows from (5.6.24) that   

 
    
    

 

1

1 1 1

1 1 1

1

( | ) , ,

, , , , , ,

, , , , , ,

( ), , ( ) ( )

p

p q p

p q p

q

E E

E E

s s

s s s

    

     

   

  

 

      

       

  

 

This completes the proof.                                                                          
Remark 5.6.2  For every {1,2, , }j q  , we take the conditional prob-
ability density function as follows: 

   
 

 

 
1

1
1

1

1

1

, , ,
, ,

, , , d

, , ,

                         
, , , d

p

i j
i

j

j p j
j j p

j p j j

j p j
X Y

j p j jY

f x x y
f y x x

f x x y y

p x x y

p x x y y








 
 
 
 

 
  

  













      (5.6.27) 

Then (5.6.20) and conditional variance can be shortened as    

 
   

1 1

1 1

, ,

, , , , d

j p p

j p j j j p j

E x x

s x x y f y x x y

  




  

    
        (5.6.28) 
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 1 1, ,j p pD x x       

   2

1 1 1, , , , dj j p p j j p jy E x x f y x x y  



         

(5.6.29)
 

respectively. We should also put   

 
    

1 1

1 1 1 1 1

, ,

, , , , , ,

j p p

p p q p p

D x x

D x x D x x

  

     

   

            
  (5.6.30) 

This is a vector-valued conditional variance. Noticing the following 
equation 

   1 1| ( ) , , p pD D x x         , 

its unified expression is as follows: 

    1( | ) | , , |qD D D       .                 (5.6.31) 

Moreover, the probability distribution function of the random vector as 
the form  1, , ,p j    can be expressed as the following: 

    
   

 1

1 1 1

1 1

, , , , , ,

, , , d d d .p j

j p j j p p j j

x x y

j p j p j

F x x y P x x y

f u u v u u v

  

  

    

     




      (5.6.32) 

Besides, it is not difficult to write out every marginal probability density 
function and marginal probability distribution function.                           

Remark 5.6.3  For the more tight expression, let   

 
    

1 1

1 1 1 1

( , ) , , , , ,

, , , , , , , ,

p q

p q p q

F x y F x x y y

F x x y F x x y

  

   
        (5.6.33) 
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for any  1, , p
px x x    and  1, , q

qy y y   . Then we see 

from (5.6.32) that ( , )F x y  is just the probability distribution function of 
the random vector ( , )  . Similarly, putting   

 
    

1 1

1 1 1 1

( , ) , , , , ,

, , , , , , , ,

p q

p q p q

f x y f x x y y

f x x y f x x y

  

   
          (5.6.34) 

we may also formally consider that ( , )f x y  is the probability density 
function of the random vector ( , )  .                                                      

Example 5.6.1  In (5.6.19), taking   being Mamdani operator, Zadeh 
operator, Lukasiewicz operator, Gödel operator, Dubois-Prade operator, 
Goguen operator, Wang operator, Einstein meet operator, Einstein union 
operator and Larsen operator, respectively, we immediately obtain vari-
ous typical probability distributions of concerned p input and q  output 
fuzzy systems, that is, Mamdani distribution, Zadeh distribution, 
Lukasiewicz distribution, Gödel distribution, Dubois-Prade distribution, 
Goguen distribution, Wang distribution, Einstein meet distribution,  
Einstein union distribution and Larsen distribution. In order to give a 
demonstration, put [14 17]

11    that is Gaines-Rescher operator as the 
following: 

 2
11

1,
( , ) [0,1] ( , )

0,
a b

a b a b
a b


  

    


  
 

. 

Then we have the following expression: 

     

     

1 111 1

1

, , , ,

1, ,

0,   otherwise,

ki kj

ki kj

pn

j p j A i B jk i

p

A i B ji

p x x y x y

k x y

  

 

 



     
 

        


        (5.6.35) 
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and suppose that following condition is satisfied: 

     1

1
0

ki kj

p
p

A i B ji
k x y  



         
   

, 

we also have the expression as follows: 

 
     

     
1

1
1

1

, , ,
p

k x yA i B jki kji

ki kj

j p j p
p

A i B ji

f x x y
k x y

 



  

           





 
        

   

   (5.6.36) 

where 1p   is Lebesgue measure on Borel  -field 1p  in 1p . The 
probability distribution with (5.6.36) for probability density function is 
called Gaines-Rescher distribution with parameter ( 1, , )p n   and  
denoted by GR( 1, , )p n  , in other words, 

 1 p, , , GR( 1, , )j p n     , 

i.e., the random vector  1 p, , , j    obeys GR( 1, , )p n  .                

Remark 5.6.4  By (5.6.36), we can see that Gaines-Rescher distribution 
is a uniform distribution. It is not good that a fuzzy system possesses uni-
form distribution, since output of such a system is no more than a step 
function. In the next section, we will discuss this problem.                      

5.7   A Conclusion on Uniform Distributions in Fuzzy Systems 

For brevity, the discussion in this section shall be restricted to single-
input single-output fuzzy system and ( , , )P   will denote probability 
space related to such a system. Considering probability distributions  
given in Examples 5.4.3 to 5.4.7, i.e., Lukasiewicz distribution, Gödel 
distribution, Dubois-Prade distribution, Goguen distribution and Wang 
distribution, we can find out that they have a common attribute that is 
local uniformity. In probability theory, uniform distribution is one of  
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familiar probability distributions of continuous type and actually reflects 
rather simple or rather ordinary uncertainty problems. However, local 
uniformity that acts as inner kernel of fuzzy system and even its extreme 
case, i.e., global uniformity (uniformity, for short) reflects an important 
property of fuzzy system: From the viewpoint of active meaning,  
local uniformity may be understood as a kind of robustness.

( ) ( | )s x E x    takes a constant value in a certain locally measura-
ble set D , i.e., for any ( , )x y D   , we have 

( | )( ) ( | ) ( ) constE E x s x        .            (5.7.1) 

From the viewpoint of passive meaning, local uniformity embodies a 
kind of slowness. Output of the system is a step function on this region 
as being D . 

When considering a certain characteristic of something, it is an  
efficient method to let this characteristic be in the extreme on purpose. 
We now let the local uniformity be in the extreme, say turn to study 
global uniformity, and look at what output response the fuzzy system 
makes here. 

Theorem 5.7.1  Given a single-input single-output fuzzy system, the re-
lated notations are same as described before, and ( , , )P   is probabil-
ity space related to it, where X Y  . If probability distribution of 
this fuzzy system is uniform distribution (global uniformity) and its 
probability density function is  

2
1( , ) ( , )

( ) X Yf x y x y
X Y


 


,                     (5.7.2) 

where 2  is two-dimensional Lebesgue measure and 2 ( ) 0X Y    is 
assumed, then output of the system is a step function, i.e., ( ) consts x  . 

Proof.  By the condition 2 ( ) 0X Y   , we can see that 1( ) 0Y  , 

where 1  is one-dimensional Lebesgue measure. According to the re-
sults discussed before, we have that for any x X , it holds that  
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1

( , )d
( ) ( | )

( , )d

d
const

( )d
Y

Y

yf x y y
s x E x

f x y y

y y c
Yy

 










  

  







                    (5.7.3) 

where d
Y

c y y . Thus ( ) consts x  .                                                    

In general, for any one system, whether it is deterministic system or 
uncertain system (including fuzzy system), if output of this system is a 
step function, then this system is undoubtedly an ordinary system and 
has no applicable worth but only certain theoretical signification. This 
enlightens us on proposing one important problem: For a non-ordinary 
uncertain system S , when constructing a function ( )s x  that represents 
this system, either if select an unapt fuzzy implication operator   or if 
adopt an unapt algorithm for construction of system (for example, CRI 
method is an algorithm for construction of system and triple I method 
can also serves as an algorithm for construction of system), then shall it 
happen that representation ( )s x  of system, obtained in conclusion, is 
only a step function, i.e., ( ) consts x  ? Obviously, the answer is posi-
tive. However, the further problem is much more significant: If an algo-
rithm for construction of system results in ( ) consts x   for many fuzzy 
implication operators , then is it yet feasible to use such an algorithm to 
construct system?   

5.8   Probability Representations of Fuzzy Systems Constructed  
by Triple I Method 

We turn to survey CRI method again. This algorithm first needs group of 
rules of fuzzy reasoning (refer to (5.2.1)) that is equivalent to functional 
relationship *s , next forms fuzzy relation iR  of reasoning  related to 
every rule by some fuzzy implication operator  , where 1,2, ,i n  , 
and finally these fuzzy relations are synthesized to be a total relation by 
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means of 
1

n

i
i

R R


  which is with the reasoning meaning by logical  

“union”. Then the action of logic has been over. How to realize **s ?  
Zadeh’s CRI method relies to fuzzy transformation (called relation com-
position as well) “  ”, i.e., for every ( )A X , it obtains the follow-
ing reasoning result by means of  the operation “ ”: 

( )B A R Y   . 

We may say that this is entire content of CRI method. 

In [20, 21], Wang has thought that CRI method is outcome of mixed 
use of implication operator and relation composition (so as to come 
down to a simple interpolation problem [6,7,13,20,21] ), and it is not proper 
from the viewpoint of logic. For this reason, he has proposed triple I 
method where all of steps have logical action [20,21,24 27] . 

The triple I method is as follows [20,21] : Suppose that ( )A X and 
( )B Y are known. Given one * ( )A X , find the “least”

* ( )B Y  so that the following implication expression:   

   * *( ) ( ) ( ) ( )A B A B
x y x y                     (5.8.1) 

takes the greatest possible value for all x X  and all y Y . 
Note that finding the “least” * ( )B Y  mentioned above can gained 

rather good treatment just in semi-ordered Banach space in general and 
certainly needs to use variational method in addition. In order to clarify 
idea, we herein do not touch upon tool of nonlinear functional analysis 
briefly. In fact, for some special situations, the use of elementary method 
can accomplish to resolve the problem. 

For requirement below, we make a little of formal change of (5.8.1). 
Noticing that implication expression  ( ) ( )A Bx y   is actually a 

binary relation, we can naturally denote it by the following form: 

 ( , ) ( ) ( )R A Bx y x y    
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according to conventional notation of binary relation. Then (5.8.1) 
changes to the following form:     

 * *( , ) ( ) ( )R A B
x y x y    .                      (5.8.2) 

How to use triple I method in construction of fuzzy system ( )s x ? 
Obviously, all of steps in process of formation from *s to total relation R
of reasoning have logical action. The process of production from R  to 

**s  alone has used relation composition (also called fuzzy transfor-
mation)  “ ”, i.e.,  

: ( ) ( ), ( )X Y A B A A R       . 

Now we use triple I method to replace this step, i.e., for any 
( )A X , the result of reasoning ( )B Y  obtained by triple I 

method should be the least fuzzy set so that the following implication 
expression:   

 ( , ) ( ) ( )R A Bx y x y                             (5.8.3) 

takes the greatest truth value for all ( , )x y X Y  . It is trivial that 
(5.8.3) and (5.8.2) coincide essentially. 

Remark 5.8.1  We have known that there are three implication operators 
“ ” in (5.8.1) from left to right. Usually, they are taken as a kind of 
implication operator. We can easily understand (5.8.3) analogously. 

( , )R x y  in (5.8.3) apparently has no symbol “ ” of implication oper-

ator, but as a matter of fact “ ” is involved in ( , )R x y  in hidden 
form. As a matter of fact, writing out ( , )R x y , we have 

 
1 1

( , ) ( , ) ( ), ( )
i i i

n n

R R A Bi i
x y x y x y    

 
    . 

Replacing symbol “ ” of implication operator with “ ”, we have  the 
following equation: 
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1 1

( , ) ( , ) ( ) ( )
i i i

n n

R R A Bi i
x y x y x y   

 
     . 

Note that for any given ( , )x y X Y   there must exist 0 {1,2, , }i n   
such that 

 
0 0 0

( , ) ( , ) ( ) ( )
i i iR R A Bx y x y x y      . 

Substituting this into (8.3), we obtain the following expression: 

   * *
0 0
( ) ( ) ( ) ( )

i iA B A B
x y x y      . 

If we ignore subscript “ 0i ”, then this expression and (5.8.1) coincide 
completely.                                                                                                 

Theorem 5.8.1  Given a single-input single-output fuzzy system, the re-
lated notations are same as described before. If take fuzzy implication 
operator 13  (i.e., Mamdani operator) then fuzzy system constructed 
by triple I method and fuzzy system constructed by CRI method have 
same probability distributions. In other words, fuzzy systems constructed 
by two methods described above are equivalent under condition of 
Mamdani implication operator. 

Proof.  We obtain total relation of reasoning by Mamdani implication 
operator 13  and according to (5.2.1) to (5.2.3), i.e.,  

   131 1
( , ) ( ), ( ) ( ) ( )

i i i i

n n

R A B A Bi i
x y x y x y     

 
      

For any given ( )A X , result of reasoning ( )B Y  that will be 
found by triple I method should be the least fuzzy set so that the follow-
ing implication expression   

   ( , ) ( ) ( ) ( , ) ( ) ( )R A B R A Bx y x y x y x y           
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takes the greatest truth value for all ( , )x y X Y  . It is not difficult to 
verify that such a B  should be  

 
 

( ) sup ( , ) ( )

( ) ( , ) ,
B R A

A Rx X

y x y x x X

x x y y Y

  

 


  

   
 

Notice that this expression is just (5.2.6). Then, by (5.2.8) to (5.2.11) and 
(5.3.1) to (5.3.2), we have  

 
1

( , ) ( ) ( )
i i

n

A Bi
p x y x y 


   , 

which is (5.4.2). Taking probability density function as follows 

 13

( , )( , )
2, , ,

X Yp x yf x y
H n







 , 

we can see from Example 5.4.1 that random vector of representing  
the system ( , ) Mam(2, , )n   . Therefore, fuzzy system constructed 
by triple I method and fuzzy system constructed by CRI method are 
equivalent.                                                                                                  

For requirement of below discussion, we introduce the concept of a 
degenerated fuzzy system and recommend the thinking of a restriction of 
fuzzy system onto a certain measurable set.   

Definition 5.8.1  Let two fuzzy systems 1S  and 2S  be related to same 
one probability space ( , , )P   and let 1( , )f x y  and 2 ( , )f x y  be 

probability density functions of 1S  and 2S , respectively. If there exist a 
set as the following: 

 2 2( ) ( )D X Y B X Y B        

and a constant [0, )c   such that  
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1 2

1

( , ) ( , ) ( , )

( , ) ( , ) 0c

x y D f x y cf x y

x y D f x y

   


   
              (5.8.4) 

then 1S  is called a degenerated fuzzy system of 2S , or a degeneration of 

2S , for short.                                                                                              

Definition 5.8.2  Let a fuzzy system S  be related to probability space 
( , , )P   and let ( , )f x y  be probability density function of S . For 
every 2B , if the following conditions are satisfied 

0 ( , )d , ( , )d
B B

f x y y y f x y y       

then we put the following expression:  

( , )d
| ( )

( , )d
B

B

B

yf x y y
s x

f x y y



 ,                           (5.8.5) 

and we call | ( )Bs x  a restriction of system ( )s x  onto the measurable 
set B .                                                                                                         

Theorem 5.8.2  Suppose that two fuzzy systems 1S  and 2S  are related 
to same one probability space ( , , )P  , 1( , )f x y  and 2 ( , )f x y are 
probability density functions of 1S  and 2S , respectively, and 1S  is a 

degeneration of 2S . Let x X  and 2B  be any given, where 2  is 

Borel  -field in Y . If 1( , )d 0
B

f x y y  , then there exists a set as the 

following: 

 *
2B B A B A      

such that * *1 2| ( ) | ( )
B B

s x s x . Especially, 1 2( ) ( )s x s x  when *B Y . 

Proof.  Take x X  and 2B  arbitrarily. Since 1S  is degeneration of 
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2S , there exist a measurable set 2 ( )D X Y   and a constant 
[0, )c   such that 1( , )f x y  and 2 ( , )f x y  satisfy (5.8.4). If 0c  , 

then 1( , ) 0f x y   for all ( , )x y X Y   and 1( , )d 0
B

f x y y  does not 

hold, i.e., the assumption does not hold. Hence, 0c  .  
Then it is not difficult to see that  { }x B D  .Take a set as the 

following: 

* { | ( , ) }B y B x y D  . 

Below, we verify that *B  is measurable. In fact, since B  is measurable, 
so is { }x B . Again since D  is measurable, so is ({ } )x B D  . And

*B  is a projected image of  { }x B D   onto B . It is well known that 

projection is measurable transformation. So *B is measurable too. This 
shows that *

2B B  . And noticing the following fact:  

* 1 1( , )d ( , )d 0
B B

f x y y f x y y   , 

we have the following result: 

* *

*

* *

*

*

*

1 2
1

1 2

2
2

2

( , )d ( , )d
| ( )

( , )d ( , )d

( , )d
            | ( )

( , )d

B B
B

B B

B
B

B

yf x y y ycf x y y
s x

f x y y cf x y y

yf x y y
s x

f x y y

 

 

 
 



 

This proves the first conclusion * *1 2| ( ) | ( )
B B

s x s x . The second con-

clusion is trivial.                                                                                         

Theorem 5.8.3  Given a single-input single-output fuzzy system, the re-
lated notations are same as described before. If take fuzzy implication 
operator 0  (i.e., Wang operator), then fuzzy system constructed by 
triple I method and fuzzy system constructed by CRI method have same 



190 Fuzzy Systems to Quantum Mechanics 
 
probability distributions. In other words, fuzzy systems constructed by 
two algorithms described above are equivalent under condition of Wang 
implication operator.  

Proof.  We obtain total relation of reasoning by Wang implication opera-
tor 0 and according to steps (5.2.1) to (5.2.3), i.e.,  

 
   

 

01

1

( , ) ( ), ( )

1,                     ( ) ( ) ,

1 ( ) ( ) , otherwise.

i i

i i

i i

n

R A Bi

A B

n

A Bi

x y x y

i x y

x y

   

 

 





 

  
 

    

 

For any given ( )A X , result of reasoning ( )B Y that will be 
found by triple I method should satisfy the following expression [20,21] :  

 
 

 

( ) sup ( , ) ( )

( ) ( , ) , ,

1 ( ) ( , )
y

B R A y

A Rx E

y A R

y x y x x E

x x y y Y

E x X x x y

  

 

 



  

   

   

               (5.8.6) 

Now for any given a point as an input x X , we make a fuzzification 

on x , i.e., we can define a singleton fuzzy set:  A x   which is as 

the form: 
1, ,

( )
0, .A

x x
x

x x
 


  

   Substitute A  into (5.8.6) and distin-

guish the following two cases. 

Case 1.  If yx E , then  yE x  is a set with one element, so that  

   

    
  

1

( ) ( ) ( , ) ,

1,                   ( ) ,

1 ( ) , otherwise

y

i i

i i

B A R Rx E

A B

n

A Bi

y x x y x y

i x y

x y
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Case 2.  If yx E , then yE   , and so we have the equation: 

 ( ) ( ) ( , ) 0B A Rx
y x x y   


    . 

In all, we have the following inference result: 

    
       

1

1,                                         , ( ) ,

( ) 1 ( ) , , ( ) ,

0,                                          otherwise

i i

i i i i

y A B

n

B A B y A Bi

x E i x y

y x y x E i x y

 

    


   

        



    



.

 

Thereby, if we learn that the point x X  is arbitrarily chosen, we  
immediately obtain the following binary function: 

   
     

1

1,                                       , ( ) ( ) ,

( , ) 1 ( ) ( ) , , ( ) ( ) ,

0,                                        otherwise

i i

i i i i

y A B

n

A B y A Bi

x E i x y

p x y x y x E i x y

 

   


  

      



    



.

 

Let  

 02, , , ,3I ( , )d d
X Y

H n p x y x y    . 

If  02, , , ,3I 0H n    , then we obtain the probability density function 

as follows: 

 1
0

( , )( , )
2, , , ,3I

X Yp x yf x y
H n







. 

And then we denote the following two sets: 
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1

2

( , ) , ( ) ( ) ,

( , ) , ( ) ( ) .

i i

i i

y A B

y A B

D x y X Y x E i x y

D x y X Y x E i x y

 

 

    

    




 

We easily see that 1D  and 2D  are set expressions of the first two condi-
tions of piecewise function ( , )p x y , respectively, and 1 2D D  .  

If we put 1 2D D D  , then the probability density function is also 
expressed as the following: 

 

 
 

1

2

1
0

1

0

1( , ) ( , )
2, , , ,3I

1 ( ) ( )
               

2, , , ,3I
i i

D

n

A Bi
D

f x y x y
H n

x y

H n




 








    


            (5.8.7) 

In order to compare result of triple I method with result of CRI meth-
od, we rewrite the probability density function in Example 5.4.7 as being

2 ( , )f x y . When yx E , by definition of yE we have the following  

inequality: 

   0 1 ,A Rx x y     , 

and so  , 0R x y   , i.e., ( ) 0B y   . Thus it is not difficult to see that

2 ( , ) 0f x y   for all ( , ) cx y D . It is also obvious that 

   
  

0 0

1 2

2, , , ,3I 2, , , ,

( , ) ( , ) ( , )

H n H n

x y D f x y f x y

   

  
 

Therefore, fuzzy systems constructed by two algorithms above are 
equivalent under condition of Wang implication operator.                        

The following shows that result of the above theorem can be extended 
to quite general situations. 
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Theorem 5.8.4  Given a single-input single-output fuzzy system, the  
related notations are same as described before. If fuzzy implication  
operator   satisfies the following conditions [14 17] : 

6P )  (0, ) 1b  ,  

7P )  (1, )b b  ,  

11P )  ( , ) 1a b a b    ,  
then fuzzy system constructed by triple I method and fuzzy system con-
structed by CRI method have same probability distributions. In other 
words, fuzzy systems constructed by two algorithms described above are 
equivalent under condition of this implication operator  . 

Proof.  We obtain total relation of reasoning by this fuzzy implication 
operator   and according to steps (5.2.1) to (5.2.3), i.e., 

 
1

( , ) ( ), ( )
i i

n

R A Bi
x y x y   


  . 

For any given input x X , first fuzzifying x and then substituting the 
obtained singleton fuzzy set A into implication expression of triple I 
method, we have  

 ( , )( , ) ( ) ( )R A Bx y x y x y     .                  (5.8.8) 

When x x , by condition 7P , it is easy to learn the following impli-
cation expression: 

      ( ) ( ) ( ) 1, ( ) ( ),A B A B B Bx y x y y y                 

and so (5.8.8) turns to  , ( )R Bx y y    . Then, by condition 11P , the 

necessary condition for implication expression  , ( )R Bx y y     to 

reach the greatest value 1 is  , ( )R Bx y y    .  

According to the basic demand of minimum for the membership func-
tion ( )B y  , we should take  ( ) ,B Ry x y   . When x x , by 

condition 6P , we see the fact that 
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   ( ) ( ) 0, ( ) 1A B Bx y y        , 

which implies that implication expression ( , ) ( )R Bx y y    reaches 
the greatest value 1 independently of ( )B y  . In all, we have 

 ( ) ,B Ry x y   . 

This coincides with result obtained by CRI method. Thus it can be easily 
seen that fuzzy system constructed by triple I method and fuzzy system 
constructed by CRI method have same probability distributions under 
condition of implication operator  .                                                        

Corollary 5.8.1  Given a single-input single-output fuzzy system, the 
related notations are same as described before. If fuzzy implication oper-
ator   is one of the following operators: 

3 ( , ) (1 ) 1a b a b         (Lukasiewicz operator), 

4
1,    0

( , )
( ) 1, 0

a
a b

b a a









 
    (Goguen operator), 

5
1,  

( , )
,  

a b
a b

b a b










    (Gödel operator), 

 
1

24 ( , ) 1 1,  0p p pa b a b p
 
 
 

      

(generalized Lukasiewicz operator), 

29
1,              

( , )
1 ,  

a b
a b

a ab a b









  
  

then fuzzy system constructed by triple I method and fuzzy system con-
structed by CRI method have same probability distributions, that is, 
fuzzy systems constructed by two algorithms described above are 
equivalent under condition of this implication operator  .  

Proof.  It is easy to verify all of these fuzzy implication operators   
satisfy conditions 6P , 7P  and 11P . Hence the conclusion is true.             
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Remark 5.8.2  The conditions 6P , 7P  and 11P  described in Theorem 
5.8.4 are only sufficient conditions but not necessary conditions. For  
instance, Mamdani operator considered in Theorem 5.8.1 does not satisfy 
conditions 6P  and 11P , but it also leads to the same conclusion as that 
described in Theorem 5.8.4.                                                                       

Theorem 5.8.5  Given a single-input single-output fuzzy system, the re-
lated notations are same as described before. If take fuzzy implication 
operator 8  (i.e., Zadeh operator), then fuzzy system constructed by 
triple I method is degeneration of fuzzy system constructed by CRI 
method. 

Proof.  We obtain total relation of reasoning by Zadeh implication opera-
tor 8  and according to steps (5.2.1) to (5.2.3), i.e.,  

 
   

81

1

( , ) ( ), ( )

1 ( ) ( ) ( )

i i

i i i

n

R A Bi
n

A A Bi

x y x y

x x y

   

  





 

      

 

For any given ( )A X , the result of reasoning ( )B Y that will 
be found by triple I method should satisfy the following expression [20,21] :  

1( ) sup ( ) ( , ) ,  ( , )
2B A R y Ry x x y x E x y    

    
 

,    (5.8.9)  

where  

 sup 1 ( ) ( , ) ,y A RE x X x x y y Y       

For any given input x X , we make the fuzzification on x , i.e., we 
define a singleton fuzzy set: 

1,
( )

0,A

x x
x

x x
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Substitute A  into (5.8.9) and distinguish the following three cases: 

Case 1:  If yx E  and   1,
2R x y   , then it is obvious that 

 

     
1

( ) ,

1 ( )
i i i

B R

n

A A Bi

y x y

x x y

 

  







       
 

Case 2:  If yx E  and   1,
2R x y   , then we have ( ) 0B y    

similarly to handling in proof of Theorem 5.8.3. 

Case 3:  When   1,
2R x y   , the conditional set in (5.8.9) is empty, 

and so ( ) 0B y  . 
Summarizing the above three cases, we have  

   
1

( , )
1

1 ( ) ( ) ( ) , , ( , ) ,
2

0,                                                      otherwise

i i i

n

A A B y Ri

p x y

x x y x E x y   




         
 .

  (5.8.10) 

Put the following symbol: 

1( , ) , ( , )
2y RD x y X Y x E x y 

    
 

 , 

And we let  

 82, , , ,3I ( , )d d
D

H n p x y x y    . 

If  82, , , ,3I 0H n    , then we can take  
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1

8

1

8

( , )( , )
2, , , ,3I

1 ( ) ( ) ( )

(2, , , ,3I)

i i i

D

n

A A B Di

p x yf x y
H n

x x y

H n




   







     




        (5.8.11) 

Regard 1( , )f x y  as the probability density function that the random vec-
tor ( , )   of this system obeys. Noticing (5.4.14) in Example 5.4.2, we 
here rewrite it as 2 ( , )f x y , i.e.,  

    1

2
8

1 ( ) ( ) ( )
( , )

(2, , , )

i i i

n

A A B X Yi
x x y

f x y
H n

   




     




. 

Putting the following constant: 

 
 

8

8

2, , ,
2, , , ,3I

H n
c

H n






 , 

we have that the following equation: 

2
1

( , ), ( , ) ,
( , )

0,               ( , ) c

cf x y x y D
f x y

x y D


 


 

This implies that fuzzy system constructed by triple I method is degener-
ation of fuzzy system constructed by CRI method.                                  

Remark 5.8.3  Here it is necessary to say a few words about sup opera-
tion and inf operation. For example, we consider sup ( )

x E
f x


, where E  is 

a conditional set. With regard to conditional set, when x E  always 
does not hold, sup ( )

x E
f x


 is regarded as sup ( )

x
f x


. As well known,

sup ( ) 0
x

f x


 , and so sup ( ) 0
x E

f x


 . Besides, by inf ( ) 1
x

f x


 , we can 
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similarly understand the case of inf ( )

x E
f x


. According to this, in the case 

3 in proof of Theorem 5.8.5, since   1,
2R x y   , conditional set on 

“ sup ” of (5.8.9) must be regarded as empty set, and then 

 ( ) sup ( ) ( , ) 0B A Ry x x y x       .                     

Theorem 5.8.6  Given a single-input single-output fuzzy system, the re-
lated notations are same as described before. If take fuzzy implication 
operator 14  (i.e., Larsen operator), then fuzzy system constructed by 
triple I method obeys uniform distribution, in other words, output of such 
a fuzzy system is a step function, scilicet, this system is ordinary fuzzy 
system. 

Proof.  We obtain total relation of reasoning by Larsen implication  
operator 14 and according to steps (5.2.1) to (5.2.3), i.e.,  

   141 1
( , ) ( ), ( ) ( ) ( )

i i i i

n n

R A B A Bi i
x y x y x y     

 
     . 

For any given ( )A X , result of reasoning ( )B Y  that will be 
found by triple I method should be the least fuzzy set so that the follow-
ing implication expression  

  

   
1

( , ) ( ) ( )

( ) ( ) ( ) ( )
i i

R A B

n

A B A Bi

x y x y

x y x y

  

   


 

       

 

takes the greatest truth value for all ( , )x y X Y  . Let   

 
1

sup ( ) ( ) ( ) 0
i i

n

A B Aix X
E y Y x y x  



              
 .    (5.8.12) 

It is not difficult to verify that such a B  is only as follows: 
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1,   
( )

0,  \B

y E
y

y Y E



  

 

Again put D X E  . Then we have 

1,   ( , )
( , )

0,  ( , )
x y D

p x y
x y D


  

 

Let 2  be two-dimensional Lebesgue measure and put 

  2
142, , , ,3I ( , )d d ( )

X Y
H n p x y x y D     

If 14(2, , , ,3I) 0H n    , then we can take  

 14

1( , ) ( , )
2, , , ,3I Df x y x y

H n


 
 . 

Regard ( , )f x y  as probability density function of random vector ( , ) 
of this system. Then fuzzy system constructed by triple I method obeys 
uniform distribution.                                                                                  

Theorem 5.8.7  Given a single-input single-output fuzzy system, the re-
lated notations are same as described before. If, in CRI method, “ ” in 
operation B A R   of relation composition is realized by ( , )   and 
if, in triple I method, three implication operators “ ” in (5.8.1) are not 
restricted to be same one fuzzy implication operator, then CRI method 
can be considered as a kind of triple I method under appropriate choice 
of implication operators. 

Proof.  Suppose that, in  ( , ) ( ) ( )R A Bx y x y     of (5.8.3), the 

first implication operator, i.e., implication operator “ 1 ” involved in
( , )R x y takes arbitrary fuzzy implication operator “ ”, and the second 

implication operator “ 2 ” and the third implication operator “ 3 ” take 

Mamdani operator, i.e., 2 3   . Then (5.8.3) becomes to the  
following expression: 
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 ( , ) ( ) ( )R A Bx y x y    . 

By triple I method, we induce the following equation: 

 
1

( ) ( ) ( , )
n

B A Ri
y x x y  


   . 

This is just the result of CRI method.                                                        

Remark 5.8.4  The step of “relation composition” in CRI method appar-
ently seems to be in defect of logical action. Actually, implication action 
of logic is hidden in “relation composition”. Just as explicit function and 
implicit function in mathematical analysis, triple I method is a kind of 
explicit implication action and CRI method is a kind of implicit implica-
tion action that can appear explicitly under certain condition as in Theo-
rem 5.8.7. However, note that explicitness for CRI method in Theorem 
5.8.7 is quite simple one, and there are also various forms of explicitness. 
Besides, if three implication operators “ ” in triple I method are not 
restricted to same one fuzzy implication operator, then CRI method can 
be regarded as a special example of triple I method. In this sense, triple I 
method is more general than CRI method. Since triple I method has good 
logical foundation and contains an idea of optimization of reasoning, it 
shall possess beautiful foreground of application.                                     

Remark 5.8.5  By comparing two algorithms for construction of fuzzy 
systems, i.e., CRI method and triple I method, through consideration of 
examples, we have discovered that if three implication operators “ ” in 
triple I method are prescribed as same one fuzzy implication operator, 
then for fuzzy systems constructed by CRI method and triple I method in 
terms of same one fuzzy implication operator the following three basic 
situations happen:  

1) Fuzzy system constructed by CRI method and fuzzy system con-
structed by triple I method are equivalent;  

2) Fuzzy system constructed by triple I method is degeneration of 
fuzzy system constructed by CRI method;  

3) Fuzzy system constructed by triple I method is uniformly distri- 
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buted, but for same one fuzzy implication operator, fuzzy system con-
structed by CRI method is not uniformly distributed.                              

5.9   Conclusions 

This chapter has discussed probability representation problem of fuzzy 
systems in detail and opened out that there exists close relation between 
fuzzy systems and probability theory. The main results are as follows: 

1) It has been pointed out that COG method that is a defuzzification 
technique commonly used in fuzzy systems is reasonable and is optimal 
method in the sense of average square. 

2) Based on different fuzzy implication operators, several typical 
probability distributions such as Zadeh distribution, Mamdani distribu-
tion, Lukasiewicz distribution, etc. have been given. They act as “inner 
kernels” of fuzzy systems. 

3) Based on some properties of probability distributions of fuzzy  
systems, it has been explained that CRI method, proposed by Zadeh, for 
construction of fuzzy systems is logical basically and effective. 

4) The special action of uniform probability distributions in fuzzy  
systems has been characterized. In general, for any one system, whether 
it is deterministic system or uncertain system (including fuzzy system), if 
this system has only step output, then it is undoubtedly an ordinary sys-
tem and has no applicable worth but only certain theoretical significance. 

5) The step of “relation composition” in CRI method apparently seems 
to be in defect of logical action. Actually, implication action of logic is 
hidden in “relation composition”. Just as explicit function and implicit 
function in mathematical analysis, triple I method is a kind of explicit 
implication action while CRI method is a kind of implicit implication 
action that can appear explicitly under certain condition as in Theorem 
8.7. However, note that explicitness for CRI method in Theorem 8.7 is 
quite simple one, and there are also various forms of explicitness. 

6) By comparing two algorithms for construction of fuzzy systems, 
i.e., CRI method and triple I method, through consideration of examples, 
it has been discovered that if three implication operators “ ” in triple I 
method are prescribed as same one fuzzy implication operator, then for 
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fuzzy systems constructed by CRI method and triple I method in terms  
of same one fuzzy implication operator the following three basic  
situations happen: a) Fuzzy system constructed by CRI method and 
fuzzy system constructed by triple I method are equivalent; b) Fuzzy sys-
tem constructed by triple I method is degeneration of fuzzy system con-
structed by CRI method; c) Fuzzy system constructed by triple I method 
is uniformly distributed, but for same one fuzzy implication operator, 
fuzzy system constructed by CRI method is not uniformly distributed. 

7) If three implication operators “  ” in triple I method are not  
restricted to same one fuzzy implication operator, then CRI method can 
be regarded as a special example of triple I method. In this sense, triple I 
method is more general than CRI method. Besides, triple I method intro-
duced an idea of optimization into reasoning, that is a much important 
innovation. Thereby, the theory of support degree was also proposed, that 
has deep theoretical significance as well as beautiful foreground of ap-
plication and is worthy to lucubrate and to apply experimentally. 

8) Just with COG method, the relation between fuzzy systems and 
probability theory has been communicated. From the viewpoint of meth-
odology, in a certain bound, one may use method of probability theory to 
investigate fuzzy systems. From the viewpoint of philosophy, uncertainty 
originally contains randomness as well as fuzziness. Randomness and 
fuzziness are often interwoven, so that it is very difficult to divide up 
them. 
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Chapter 6  

Fuzzy System Representations of 
Stochastic Systems 

6.1   Introduction 

Uncertainty systems have played more and more important role in many 
areas such as control theory, system engineering, artificial intelligence, 
behavior science, social science, etc. As we all know, uncertainty of sys-
tems are usually with respect to randomness or fuzziness. So if people 
focus on randomness of an uncertainty system, they must use probability 
theory or stochastic process to describe the system, which uncertainty 
system is called a stochastic system; if people pay attention to fuzziness 
of an uncertainty system, they often treat the system by using fuzzy set 
theory, which uncertainty system is called a fuzzy system. Clearly, it is 
interesting to communicate the relationship between probability theory 
and fuzzy set theory with respect to uncertainty systems. This paper will 
research the relationship between probability theory and fuzzy set theory 
when they are used to deal with un-certainty systems. 

6.2   Sketch of Fuzzy Systems 

We consider Figure 6.2.1 that shows a single-input single-output open-
loop system S . We have known that if this system S  is a deterministic 
system then one may use the conventional method to make a mathemati-
cal model of the system and find a solution ( )y x  of the model by ana-

lytic or numerical methods. In this way, this system shall be regarded  
as having been mastered basically. Then the system S  may be simply  
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understood by a function, denoted by a mapping as follows, where the  
set X  is the input universe and the set Y  is the output universe: 

: , ( )s X Y x y s x→   . 

The system is formally denoted by ( , )s S X Y= . 
 

 
Fig. 6.2.1.  Single-input single-output open-loop system 

 
However, for an uncertain system, we cannot use the conventional 

method to get a “crisp” or “accurate” the function s . Having to reduce 
the request, we try to obtain an approximate function s  as follows: 

                   : , ( )s X Y x y s x→   ,                          (6.2.1) 

such that ( )s x  approximates ( )s x  as close as possible. With stochastic 

viewpoint to understand above problem there is such meaning: randomly 
take a point x  in X  and put into the input channel of system S , and 
after enter S  there exists an output point ( )y x  in the output channel of 

system S  to correspond the input point x . However, what point in Y  
should be taken as ( )y x  is unknown beforehand. This means that for 

system S  there are two random variables ξ  and η  that are defined re-

spectively in probability spaces ( )11, ,X P  and ( )2 2, ,Y P , where   

and   are σ -fields on X  and Y  respectively, and 1P  and 2P  are 

probability measures on   and   respectively.     

For convenience, we always assume that X  and Y  are measurable 
sets on real number space  . Evidently η  and ξ  depend on each other, 

that is, there is a Borel measurable function g  such that ( )gη ξ=  

which ought to coincide with ( )y s x= , i.e., ( )sη ξ= . We want to  

determine a Borel measurable function ( )s ξ  so that η  and ( )s ξ  are 

closed up to the best, and then s  may be regarded as an approximation 
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of s , where the existence of ( )2
E η  and ( )

2
( )E s ξ 

 
 are assumed. The 

“closeness” herein needs a criterion, and the most commonly used one is 

“least squares method”. Then we have to demand that  

( ) ( ){ }2 2
( ) inf ( )E s E

ϕ
η ξ η ϕ ξ   − = −

   
, 

where ϕ  varies in a kind of space of Borel measurable functions. We 

have known that conditional mathematical expectation should meet the 

demand; so we can put ( )( )s Eξ η ξ≜ . This shows that random varia-

ble ( )s ξ  is the optimal approximation in mean square to random varia-

ble η . But, it is only of formal meaning as we have not got any probabil-

ity information about random vector ( , )ξ η . Now we start to do the 

work.  

Taking 1 2,X YΩ × ×≜ ≜F B B , and 1 2P P P×≜ , where F  is 

Borel σ -field generated by Cartesian product of Borel σ -fields 1B  and 

2B , and P  is product probability measure. Then we obtain joint proba-

bility space ( , , )PΩ F . With same notations, redefine ξ andη as ran-

dom variables on Ω :  

: , ( , ) ( , ) ( ),

: , ( , ) ( , ) ( ).

x y x y x

x y x y y

ξ ξ ξ

η η η

Ω →

Ω →

ℝ ֏ ≜

ℝ ֏ ≜
 

Thus ( , )ξ η  turns into a two-dimensional random vector on joint proba-

bility space ( , , )PΩ F . For any x X∈ , when { }xω ω ξ∈ ∈ Ω = , we 

have 

                       ( )( )s x E xη ξ= = .                             (6.2.2) 

This means that ( )s x  becomes the conditional mathematical expectation 

of random variable η  under condition of random variable xξ = . 

If we master whole probability information on ( , )ξ η , especially 

know continuous probability density ( , )f x y  of ( , )ξ η , then (6.2.2) 

turns into the following equation which is easy handled: 
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             ( )
( , ) d

( ) | ,
( , )d

f x y y y
s x E x

f x y y
η ξ

+∞

−∞
+∞

−∞

= = = 


               (6.2.3) 

where the demands need that, for any x X∈ ,  

+
| | ( , )d , 0 ( , )d .y f x y y f x y y

∞ +∞

−∞ −∞
< +∞ < < +∞   

Clearly in actual computing, (6.2.3) should be the following: 

                  
( , ) d

( )
( , )d

Y

Y

f x y y y
s x

f x y y
= 


.                              (6.2.4) 

For an uncertainty system S , if we can know the continuous probabil-
ity density ( , )f x y  on the system, s  defined by (6.2.4) is called a  

continuous stochastic approximation system of S , or a continuous  
stochastic system of S . But in our mind, we should know that the  
continuous stochastic system s  is with regard to an uncertainty system 

S . So after time when we say a continuous stochastic system s , it  

always has above meaning. Besides for convenience, a continuous  
stochastic system s  is also denoted as the following: 

                           ( ), , ( , )s S X Y f x y= .                             (6.2.5) 

Be careful that (6.2.4) and (6.2.5) use the same symbol s , which means 
that s  has two meanings: it not only abstractly expresses a continuous 

stochastic approximation system, but also indicates correspondence rela-
tionship between X  and Y . 

6.3   Fuzzy Reasoning Meaning of Stochastic Systems 

For convenience, we need to introduce some concepts. Given a universe 

{ }, 1iX A i n= ≤ ≤ is a family of normal fuzzy sets on X , i.e.,  
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( )( ) ( )( ){1,2, , } 1
ii A ii n x X xμ∀ ∈ ∃ ∈ = , 

where ix  is called peak point of iA ; of course, the peak point is not 
unique.   is called a fuzzy partition of X , if it meets the condition:  

             ( )
1

( ) 1
i

n

A
i

x X xμ
=

 ∀ ∈ = 
 
 .                          (6.3.1) 

It is not difficult to verify that such fuzzy sets have Kronecker property: 

( ) 1,     ,

0, .iA j ij

i j
x

i j
μ δ

=
= =  ≠

 

Besides for proving the following main theorem, we have to give two 
lemmas. These two lemmas are with respect to integral with parameter. 

Lemma 6.3.1 Let ( , )f x y  be a binary continuous function on X Y× , 

where [ ]1 1,X a b=  and [ ]2 2,Y a b=  are finite real number intervals. For 

the integral with parameter 
2

2

( ) ( , )d
b

a
I x f x y y=  , we have such a result: 

for arbitrarily given 0ε > , there is always a common 0δ >  without 
dependent of parameter x  such that, for any partition:  

2 0 1 2na y y y b= < < < = , 

as long as { }max 1,2, ,iy i nλ δ= Δ = < , then the Riemann sum of 

( )I x , i.e. ( )
1

,
n

i i
i

f x yξ
=

Δ , uniformly holds the condition that  

( ) ( )
1

( ) ,
n

i i
i

x X I x f x yξ ε
=

 
∀ ∈ − Δ < 

 
  

where 1 ( 1, 2, , )i i iy y y i n−Δ = − =   and iξ  takes its value in [ ]1,i iy y−  

arbitrarily. 
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Proof.  For arbitrarily given 0ε > , let 
1

, 1, 2,k k
k

δ = =  . We can 

prove that there must exist a k  such that that kδ δ=  meets the conclu-

sion of the lemma. If it is not, then for every k , exist kx X∈  and a  

partition:  

( ) ( ) ( )
2 0 1 2k

k k k
na y y y b= < < < =  

of Y and a kind of taking value way of ( ) ( ) ( )
1 ,k k k

i i iy yξ − ∈   , although 

{ }( )max 1, 2, ,k
k i k ky i nλ δ= Δ = < , 

we have ( ) ( )( ) ( )

1

,
kn

k k
k k i i

i

I x f x yξ ε
=

− Δ ≥ . As { }kx  is a bounded se-

quence, it has a convergent subsequence { }jkx  such that *j

j
kx x→∞⎯⎯⎯→ . 

Noticing 0
j

j
kδ →∞⎯⎯⎯→ , so we have the following inequality:  

( ) ( )( ) ( )

( ) 2

2

1

* *

0 lim ,

( , )d 0.

k j

j j

j j

n
k k

k k i i
j

i

b

a

I x f x y

I x f x y y

ε ξ
→∞ =

< ≤ − Δ

= − =




 

This is a clear contradiction.                                                                      

Lemma 6.3.2  Let ( , )f x y  be a binary continuous function on X Y× , 

where [ ]1 1,X a b=  and [ ]2 2,Y a b=  are finite real number intervals. For 

the integral with parameters follows: 

2

2

( ) ( , )d
b

a
I x f x y y=  , 

if the condition ( ) ( )( ) 0x X I x∀ ∈ >  holds, then there exists a 0δ > , 

such that for any partition:  
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2 0 1 2na y y y b= < < < =  

of Y  and any kind of taking value way of iξ  in [ ]1,i iy y− , the Riemann 

sum ( )
1

,
n

i i
i

f x yξ
=

Δ  of ( )I x  must satisfy the following implication: 

{ }

( ) ( )
1

max 1, 2, ,

, 0

i

n

i i
i

y i n

x X f x y

λ δ

ξ
=

Δ = <

  ∈ Δ > 
 


 
 

Proof.   Firstly, it is easy to know the following fact:  

[ ]2

2
1 1( ) ( , )d ,

b

a
I x f x y y C a b= ∈ . 

Thus there exists the least point of 0x X∈  for ( )I x  in X  such that the 

condition ( ) ( )( )0( )x X I x I x∀ ∈ ≥  holds. Taking ( )0I xε = , from 

lemma 6.3.1 we know the fact that there exists a 0δ >  such that for any 
partition of Y , we have 

2 0 1 2na y y y b= < < < =  

and for any kind of taking value ways of iξ  in the subinterval [ ]1,i iy y− , 

the Riemann sum ( )
1

,
n

i i
i

f x yξ
=

Δ  of ( )I x  must meet the implication:          

( ) ( )
1

( ) ,
n

i i
i

x X I x f x yλ δ ξ ε
=

 
<  ∈ − Δ < 

 
 . 

Then we have the following inequality: 

( ) ( )0
1

, ( ) 0
n

i i
i

f x y I x I xξ ε ε
=

Δ > − ≥ − = . 

This is uniformly true for all x X∈ .                                                        
Based on Lemma 6.3.2 and by using the way in the proof of Lemma 

6.3.1, we can easily prove the following lemma. 
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Lemma 6.3.3  Let ( , )f x y  be a binary continuous function on the uni-

verse X Y× , where [ ]1 1,X a b=  and [ ]2 2,Y a b=  are finite real number 

intervals, and it is with the condition: 

( ) ( )2

2

( , )d 0
b

a
x X f x y y∀ ∈ > . 

For arbitrarily given 0ε > , there is always a common 0δ >  without 
dependent of parameter x  such that, for any partition:  

2 0 1 2na y y y b= < < < = , 

as long as { }max 1,2, ,iy i nλ δ= Δ = < , then  

( )

( )

2

2

2

2

1

1

,( , ) d

( , )d ,

n
b

i i i
a i

b n

i ia
i

f x yf x y y y

f x y y f x y

ξ ξ
ε

ξ
=

=

Δ
− <

Δ


 

 

is uniformly true for all x X∈ , where 1 ( 1, , )i i iy y y i n−Δ = − =   and 

iξ  takes its value in [ ]1,i iy y−  arbitrarily.                                                  

Theorem 6.3.1  Given a continuous stochastic system as the following: 

( ), , ( , )s S X Y f x y= , 

where [ ]1 1,X a b=  and [ ]2 2,Y a b=  are finite real number intervals. If 

the following condition is satisfied 

( ) ( )2

2

( , )d 0
b

a
x X f x y y∀ ∈ > , 

then there exists a group of fuzzy inference rules: 
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             If x  is iA  then y  is iB , 1, 2, ,i n=  ,               (6.3.2) 

where ( )iA X∈  and ( )iB Y∈  such that the fuzzy system s  con-

structed by the group of fuzzy inference rules can approximate the  
continuous stochastic system s  to arbitrarily given precision. 

Proof.  Noticing (6.2.4), we make a partition of interval Y  as the  
follows: 

2 0 1 2na y y y b= < < < = , 

and write ( )1 2 1, , , , , 1,2, ,n i i iy y y y y y i nγ −Δ = − =   , and  

{ }max 1,2, ,iy i nλ = Δ =  . 

Then we make two Riemann sums of ( , )f x y y  and ( , )f x y  on Y   re-
spectively, with respect to the partition and the node group γ , as the  

follows:  

( ) ( )
1 1

, , ,
n n

i i i i i
i i

f x y y y f x y y
= =

Δ Δ  . 

From the condition of the theorem and Lemma 6.3.2, we have the fact 

that, 1 0δ∃ > , if 1λ δ< , then ( ) ( )
1

, 0
n

i i
i

x X f x y y
=

 ∈ Δ > 
 
 . So we 

have the following expression: 

( )

( )
( )

( )

2

2

2

2

*
1

1 1

1 1

( , ) d
( ) ( | )

( , )d

,
,

( ) ,
, ,

i

b

a

b

a

n

i i i n n
i ii

i in n A
i i

i i j j
i j

f x y y y
s x E x

f x y y

f x y y y
f x y y

y x y
f x y y f x y y

η ξ

μ=

= =

= =

= = =

 
Δ  Δ ≈ = =

 Δ Δ 
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where we have made a definition:  

( )
( )

*

1

,
( ) , 1,2, ,

,
i

i i
nA

j j
j

f x y y
x i n

f x y y
μ

=

Δ
=

Δ
  , 

and clearly * ( )iA X∈ . Now for any given an approximation precision 

0ε > , because ( , )f x y  is continuous, by using Lemma 6.3.3, 2 0δ∃ >  

and 2 1δ δ< , when 2λ δ< , for all x X∈  the following holds uniformly: 

                    *

1

( ) ( )
2i

n

iA
i

s x x y
εμ

=

− < .                        (6.3.3) 

Based on the nodes ( 0,1, , )jy j n=  , we can make 1n +  fuzzy sets 

( 0,1, , )jB j n=   on Y , with demand of jB  being a fuzzy partition on 

Y  and continuous on Y , which is regarded as a kind of fuzziness of 
( 0,1, , )jy j n=  ;  for example, jB  can be taken as “triangle waves” 

membership functions: 

( ) ( )

( ) ( )
( ) ( )

0

1 0 1 0 1

1 1 1

1 1 1

,     ,
( )    

    0,                           otherwise;

,     ,

( ) ,     ,   

    0,                                otherwise,
j

B

j j j j j

B j j j j j

y y y y y y y
y

y y y y y y y

y y y y y y y y

μ

μ
− − −

+ + +

− − ≤ ≤= 

 − − ≤ ≤
= − − < ≤



( ) ( )1 1 1

       

1, 2, , 1;

,     ,
( )    

    0,                                otherwisen

n n n n n
B

j n

y y y y y y y
yμ − − −

= −

− − ≤ ≤= 




.

 

And make fuzzy sets ( 1, , )iA i n=   as the following: 



 Fuzzy System Representations of Stochastic Systems 215 
 

( )
( )

1

,
( ) , 1,2, ,

,
i

i
A n

j
j

f x y
x i n

f x y
μ

=

=


  .                     (6.3.4) 

Let { }1iA i n≤ ≤  and { }1iB i n≤ ≤ . Regarding   and   

as linguistic variables that take their values in themselves, we form a 
group of fuzzy inference rules as the same as (6.3.2):  

If x  is iA  then y  is iB , 1, 2, ,i n=  . 

Now we construct a fuzzy system by means of CRI method as follows. 
Firstly, coming from i-th fuzzy inference rule of (6.3.2), every fuzzy 

relation i i iR A B×  on X Y×  is formed, where its membership func-

tion is 

( )( )( , ) ( , ) ( ) ( )
i i iR A Bx y X Y x y x yμ μ μ∀ ∈ × = ∧ . 

Since the n  fuzzy inference rules should be combined by logical “or”, a 

whole fuzzy inference relation 
1

n

i
i

R R
=

=  is obtained, i.e., for any binary 

point ( , )x y X Y∈ × , we have 

( )
1 1

( , ) ( , ) ( ) ( )
i i i

n n

R R A B
i i

x y x y x yμ μ μ μ
= =

= ∨ = ∨ ∧ . 

For any a fuzzy set ( )A X∈ , a fuzzy inference result ( )B Y∈  

should be got by R , which is equivalent to a fuzzy transformation from 
( )X  to ( )Y  being introduced by R , denoted by “ ”, i.e.,  

: ( ) ( ), ( )X Y A B A A R→ → =     , 

where its membership function is as follows 

              ( ) ,( ) ( ) ( , )  .B A R
x X

y x x y y Yμ μ μ
∈

= ∨ ∧ ∈                (6.3.5) 
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For arbitrarily given an input x X′∈ , for we may use (6.3.5), x′ should 

be turned into a fuzzy set ( )A X′∈  as { }( ) ( )A xx xμ χ′ ′ , where Dχ  

is the characteristic function of a set D . Substituting A′  into (6.3.5), we 
obtain a result of reasoning ( )B Y′∈  as follows 

      ( ) ( )( )
1

( ) , ( ) ,
i i

n

B R A B
i

y x y x y y Yμ μ μ μ′ =
′ ′= = ∨ ∧ ∈ .      (6.3.6) 

Since B′  is a fuzzy set, we have to obtain exact quantity y Y′∈  by a 

kind of defuzzification technique. From (6.3.6) we know that ( )B yμ ′  is 

piecewise continuous on Y . So we have that 

2 2

2 2

( )d , ( )d .
b b

B Ba a
y y y y yμ μ′ ′< +∞ < +∞   

Now we can prove the fact that 
2

2

( )d 0
b

Ba
y yμ ′ > . In fact, if it not true, 

i.e., 
2

2

( )d 0
b

Ba
y yμ ′ = , then since ( )B yμ ′  is piecewise continuous on Y  

and non-negative, we have the fact that ( ) 0B yμ ′ =  a.e. Y .  

Because ( )
1

, 0
n

i
i

f x y
=

′ > , there must exist a 0 {1, 2, , }i n∈  , such 

that ( )
0

0
iA xμ ′ > . Noticing (6.3.6), we know that ( ) 0B yμ ′ = , a.e. Y , 

which is contrary with the definition of all jB  being continuous normal 

fuzzy sets. Thus we can put the following symbol: 

2

2

2

2

( )d

( )d

b

Ba

b

Ba

y y y
y

y y

μ

μ

′

′

′ =



. 

Then we get the correspondence point y′  in Y  of x′ . By the arbitrari-

ness of x′ , x′ can be replaced by a general point x  in X , and y′  is re-

placed by ( )s x . And we obtain a function s : X Y→  as follows: 
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( )
( )

2

2

2

2

1

1

( ) ( ) d
( )

( ) ( ) d

i i

i i

nb

A Ba i

nb

A Ba i

x y y y
s x

x y y

μ μ

μ μ

=

=

 ∨ ∧  
 ∨ ∧  




 .                  (6.3.7) 

s  is a fuzzy approximation system with respect to the uncertainty  

system S , denoted by ( ), , ,s S X Y   .  Besides it is not difficult 

to understand the following expression:  

( ) ( )2

2 1
( ) ( ) d 0

i i

nb

A Ba i
x X x y yμ μ

=

  ∀ ∈ ∨ ∧ >     . 

By Lemma 6.3.2, we have that, 3 0δ∃ > , such that when 3λ δ< , for any 

appoint x X∈ , we have the following inequality: 

( )( )
1

1

( ) 0
i i

n n

A B j j
i

j

x y yμ μ
==

 ∨ ∧ Δ >  
 . 

Noticing the Riemann sun of (6.3.7) and iB  being with Kronecker prop-

erty, we have the following result: 

( )( )
( )( )

( )

( )
( )
( )

*

1
1

1
1

1 1

1 1

1 1

1

( )

( )
( )

( ) ,

( ) ,

,
( ) ,

,

i i

i i

j

j

i

n n

A B j j j
i

j

n n

A B j j
i

j

n n

A j j j j j
j j

n n

A j j j
j j

n n
i i

i in A
i i

j j
j

x y y y

s x
x y y

x y y f x y y y

x y f x y y

f x y y
y x y

f x y y

μ μ

μ μ

μ

μ

μ

==

==

= =

= =

= =

=

 ∨ ∧ Δ  ≈
 ∨ ∧ Δ  

Δ Δ
= =

Δ Δ

Δ
= =

Δ





 

 

 


            (6.3.8) 
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where we have put that  

( )

( )
*

1

,
( )

,
i

i i

nA

j j

j

f x y y
x

f x y y

µ

=

∆

∆
≜ . 

From (6.3.8) and Lemma 6.3.3, we know that 4 0δ∃ >  and 4 3δ δ< , 

when 4λ δ< , for all x X∈ , the following holds uniformly:  

*

1

( ) ( )
2i

n

iA
i

s x x y
ε

µ
=

− < . 

At last, take { }2 4min ,δ δ δ= . When λ δ< , for all x X∈ , the follow-

ing holds uniformly: 

* *

* *

1 1

1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .
2 2

i i

i i

n n

i iA A
i i

n n

i iA A
i i

s x s x s x x y x y s x

s x x y x y s x

µ µ

ε ε
µ µ ε

= =

= =

− = − + −

≤ − + − < + =

 

 
 

This means that fuzzy system s  can approximate continuous stochastic 

system s  to arbitrarily given precision ε .                                             □  

Example 6.3.1  Given a continuous stochastic system, where we take 

( , )X Y= = −∞ ∞  and ( , )f x y  is a binary normal probability density as 

being ( )2 2

1 2 1 2, , , ,N a a rσ σ , i.e. 

( )
2 2

1 1 2 2
2 22

1 21 2

( ) 2 ( )( ) ( )1

2 1

2

1 2

1
( , )

2 1

x a r x a y a y a

r

f x y e
r

σ σσ σ

πσ σ

 − − − −
− − + 

−   
= ⋅

−
 

If we take 
2

1 2 1
0.5, 0, 0, 0.5r a a σ= = = = , and 2 1.5σ = , then above 

equation is as the following:  

2 24 2 4
4

3 92 2
( , )

3

x xy y

f x y e
π

 
− − +  
 =  
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Fig. 6.3.1.  Input cure of continuous stochastic system ( )s x  

 
Based on 3σ  principle, X  and Y  can be approximately taken as finite 
intervals. For example, X  is taken as [ 3,3]−  by 16σ , and Y  is taken as 

[ 6,6]−  by 24σ . By Theorem 6.3.1, we have the following equation and 

its image can refer to Figure 6.3.1. 

( )
2 2

2 2

4 2 4
46 3 9

6

4 2 4
46 3 9

6

d
( )

d

x xy y

x xy y

ye y
s x E x

e y

η ξ

 
− − +  
 

−
 

− − +  
 

−

= = = 


 

Now we consider the fuzzy approximation system s . First make a par-
tition of Y :  

0 1 2 11 126, 5, 4, , 5, 6y y y y y= − = − = − = = ; 

then make fuzzy sets ( 0,1, ,12)jB j =  as Figure 6.3.2. ( )
iA xμ  are 

defined as the following equation (see (6.3.4)), their images refer to  
Figure 6.3.2. 

( )
( )

2 2

2 2

4 2 4
4

3 9

12 4 2 4
12 4

3 9

1
1

,
( )

,

i i

i

j j

x xy y

i
A

x xy y
j

j
j

f x y e
x

f x y e

μ

 
− − +  
 

 
− − +  
 

=
=

= =
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Fig. 6.3.2.  Membership functions of jB  

 

 

Fig. 6.3.3.  Membership functions of iA  

 
 

 
Fig. 6.3.4.  Output cure of fuzzy system s  
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We now calculate the following integral: 

( )
( )

126

6 1

126

6 1

( ) ( ) d
( )

( ) ( ) d

i i

i i

A B
i

A B
i

x y y y
s x

x y y

μ μ

μ μ

− =

− =

 ∨ ∧  =
 ∨ ∧  




, 

which image refers to Figure 6.3.4. And the images of ( )s x  and ( )s x  
refer to Figure 6.3.5. 
 

 
Fig. 6.3.5.  The comparison cures of ( )s x  and ( )s x  when 1λ = , where 

“ ” indicates the cure of ( )s x  and “—” represents the cure of ( )s x . 

 
Fig. 6.3.6.  The comparison cures of ( )s x  and ( )s x  when 0.5λ = , where 

“ ” indicates the cure of ( )s x  and “—” represents the cure of ( )s x . 
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If the partition nodes{ }jy are increased of double number, i.e., 

0 1 2 246, 5.5, 5, , 6y y y y= − = − = − = , 

then the approximation precision increases better, where the comparison 
cures of ( )s x  and ( )s x  refer to Figure 6.3.6. And if the partition nodes 

{ }jy  are increased, then the cures of ( )s x  and ( )s x  are basically coin-

cident from Figure 6.3.7. 
 

 
Fig. 6.3.7.  The comparison cures of ( )s x  and ( )s x  when 0.1λ = , where 

“ ” indicates the cure of ( )s x  and “—” represents the cure of ( )s x . 

6.4 Fuzzy Reasoning Representations of Double-inputs  
Single-output Continuous Stochastic Systems  

Figure 6.4.1 shows a double-input single-output open-loop system S . 
The input variables  and y  take values in the input universes X  and 

Y  respectively, and the output variable z  takes values in the output uni-
verse Z . If this system  is a deterministic system then one may use the 
conventional method to make a mathematical model of the system S  
(for example, one can use the mechanism modeling approach to establish 
a partial differential equation model) and find a solution ( , )z x y  of the  

 

x

S
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model by analytic or numerical methods. In this way, this system shall be 
regarded as having been mastered basically.  
 

 
Fig. 6.4.1.  A double-input single-output open-loop system 

 
Then the system may be simply understood by a binary function,  

also denoted by s , i.e.,  

                   : , ( , ) ( , )s X Y Z x y z s x y× →   .                    (6.4.1) 

When S  is an uncertainty system, although it is hard to get a precise 
function as (6.4.1), we may often obtain an approximate function as  
follows 

             : , ( , ) ( , )s X Y Z x y z s x y× →   ,                  (6.4.2) 

such that ( , )s x y  and ( , )s x y  are very close. Just as stating in section 

6.2, we still consider to realize above approximation thought by using 
conditional mathematical expectation.  

Let ,X Y  and Z  be three measurable sets on real number space  , 

and ξ , η  and ζ  be three random variables defined on the probability 

spaces ( ) ( )1 1 2 2, , , , ,X P Y P   and ( )3 3, ,Z P  respectively, where 1 , 

2  and 3  are three Borel σ -fields on ,X Y  and Z  respectively,  

and 1P , 2P  and 3P  are the probability measure on 1 , 2  and 3   

respectively.  

Taking X Y ZΩ × × , 1 2 3× ×     and 1 2 3P P P P× × , we 

obtain joint probability space ( , , )PΩ  , where   is the Borel σ -field 

generated by Cartesian product of Borel σ -fields 1 , 2  and 3 , and 

P  is the product probability measure. With same notations, redefine 
,ξ η  and ζ  as random variables on Ω :  

S
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: , ( , , ) ( , , ) ( ),

: , ( , , ) ( , , ) ( ),

: , ( , , ) ( , , ) ( ).

u v w u v w u

u v w u v w v

u v w u v w w

ξ ξ ξ
η η η
ζ ζ ζ

Ω →
Ω →
Ω →

  
  
  

 

 

 

 

Then a three-dimensional random vector ( , , )ξ η ζ  defined on ( , , )PΩ   

is got. For any ( , )x y X Y∈ × , when { },x yω ω ξ η∈ ∈Ω = = , let 

                         ( )( , ) ,s x y E x yζ ξ η= = .                       (6.4.3) 

As stated in section 6.2, (6.4.3) is the optimal approximation in mean 
square to ( , )s x y . 

Suppose that we have known the continuous probability density func-
tion ( , , )f x y z  of the random vector ( , , )ξ η ζ . Then the conditional 

mathematical expectation (6.4.3) can be written as follows: 

                
( , , ) d

( , ) ,
( , , )d

Z

Z

f x y z z z
s x y

f x y z z
= 


                           (6.4.4) 

where there is a demand: for any ( , )x y X Y∈ × , 

| | ( , , )d , 0 ( , , )d .
Z Z

z f x y z z f x y z z< +∞ < < +∞   

When the continuous probability density function ( , , )f x y z  of the un-
certainty system is known, s  defined by (6.4.4) is called a double-input 

single-output continuous approximation stochastic system or simply a 
double-input single-output continuous approximation stochastic system, 
denoted by 

              ( ), , ( , , )s S X Y Z f x y z= × .                         (6.4.5) 

For proving the following main theorem, we still need two lemmas. 

Lemma 6.4.1  Let ( , , )f x y z  be a ternary continuous function defined 

on the universe X Y Z× × , where  



 Fuzzy System Representations of Stochastic Systems 225 
 

[ ] [ ] [ ]1 1 2 2 3 3, , , , ,X a b Y a b Z a b= = = , 

are three finite real number intervals. For the integral with parameter as 
follows: 

3

3

( , ) ( , , )d
b

a
I x y f x y z z=  , 

we have such a result: for arbitrarily given 0ε > , there is always a 
common 0δ >  without dependent of parameter ( , )x y  such that, for 

any partition of Z  as the following: 

3 0 1 3na z z z b= < < < = , 

as long as { }max 1,2, ,iz i nλ δ= Δ = < , then the Riemann sum of 

the integral ( , )I x y , ( )
1

, ,
n

i i
i

f x y zξ
=

Δ ,  must meet the condition that  

( )
1

( , ) , ,
n

i i
i

I x y f x y zξ ε
=

− Δ <  

is uniformly true for all ( , )x y X Y∈ × , where  

1, 1,2, , ,i i iz z z i n−Δ = − =   

and iξ  takes its value in [ ]1,i iz z−  arbitrarily. 

Proof.  For arbitrarily given 0ε > , let 
1

, 1, 2,k k
k

δ = =  . We can 

prove that there must exist one k  such that kδ δ=  meets the conclusion 

of the lemma. If it is not, then for every k , exist ( ),k kx y X Y∈ ×  and a 

partition of Z  as follows 

( ) ( ) ( )
3 0 1 3k

k k k
na z z z b= < < < =  

and a kind of taking value way of ( )k
iξ  in ( ) ( )

1 ,k k
i iz z−   , although 
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{ }( )max 1, 2, ,k
k i k kz i nλ δ= Δ = < , 

we have the following inequality: 

         ( ) ( )( ) ( )

1

, , ,
kn

k k
k k k k i i

i

I x y f x y zξ ε
=

− Δ ≥ .       (6.4.6) 

As a matter of fact, notice that { }kx  in binary sequence ( ){ },k kx y  are 

all bounded sequences and so it has a convergent subsequence { }jkx  

such that *j

j
kx x X→∞⎯⎯⎯→ ∈ .  

In the same way, for  the subsequence { }jky , there is also a conver-

gent subsequence { }jp
ky  such that *jp

p
ky y Y→∞⎯⎯⎯→ ∈ . And noticing 

the limit expression 0
jp

p
kδ →∞⎯⎯⎯→ , we can have  the following result: 

( ) ( ) ( )

( ) ( )3

3

1

* * * *

0 lim , , ,

, , , d 0.

k jp
j jp p

j j j jp p p p

n
k k

k k k k i i
p

i

b

a

I x y f x y z

I x y f x y z z

ε ξ
→∞ =

 < ≤ − Δ 
 

= − =




 

This is a clear contradiction.                                                                     

Lemma 6.4.2 Let ( , , )f x y z  be a ternary continuous function defined in 

the set X Y Z× × , where [ ]1 1,X a b= , [ ]2 2,Y a b=  and [ ]3 3,Z a b=  

are finite real number intervals. For the integral with parameter as  
follows 

3

3

( , ) ( , , )d
b

a
I x y f x y z z=  , 

if the following condition ( ) ( )( , ) ( , ) 0x y X Y I x y∀ ∈ × >  is satisfied, 

then there must exist a 0δ > , such that for any partition of Z  as follows 
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3 0 1 3na z z z b= < < < =  

and any kind of taking value ways of iξ  in [ ]1,i iz z− , the Riemann sum  

of the integral ( , )I x y , ( )
1

, ,
n

i i
i

f x y zξ
=

Δ , must meet the following  

implication: 

{ }

( ) ( )
1

max 1,2, ,

( , ) , , 0

i

n

i i
i

z i n

x y X Y f x y z

λ δ

ξ
=

= Δ = < 

 ∀ ∈ × Δ > 
 



 

Because the way of the proof is the same as the proof of Lemma 6.4.1, it 
is omitted.                                                                                                   

Besides, we have the following lemma just like Lemma 6.3.3.  

Lemma 6.4.3 Let ( , , )f x y z  be a ternary continuous function defined in 

the set X Y Z× × , where [ ] [ ] [ ]1 1 2 2 3 3, , , , ,X a b Y a b Z a b= = =  are  

finite real number intervals, and meet the condition:  

( )( )3

3

( , ) ( , , )d 0
b

a
x y X Y f x y z z∀ ∈ × > . 

For arbitrarily given 0ε > , there is always a common 0δ >  without 
dependent of parameter ( , )x y  such that, for any partition of the set Z  

as being : 3 0 1 3na z z z b= < < < = , the following  implication:  

{ }

( )

( )

3

3

3

3

1

1

max 1,2, ,

, ,( , , ) d

( , , )d , ,

i

n
b

i i i
a i

b n

i ia
i

z i n

f x y zf x y z z z

f x y z z f x y z

λ δ

ξ ξ
ε

ξ
=

=

= Δ = < 

Δ
− <

Δ


 



 

is uniformly true for all ( , )x y X Y∈ × , where   

1, 1, 2, ,i i iz z z i n−Δ − =  , 
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and iξ  takes its value in [ ]1,i iz z−  arbitrarily.                                           

Theorem 6.4.1  Given a double-input single-output continuous stochas-

tic system: ( ), , ( , , )s S X Y Z f x y z= × , where  

[ ] [ ] [ ]1 1 2 2 3 3, , , , ,X a b Y a b Z a b= = =  

are finite real number intervals. If the following condition is satisfied:  

( )( )3

3

( , ) ( , , )d 0
b

a
x y X Y f x y z z∀ ∈ × > , 

then there must exist a group of fuzzy inference rules as follows: 

         If ( , )x y  is iD  then z  is iC , 1, 2, ,i n=  ,                 (6.4.7) 

where ( )iD X Y∈ ×  and ( )iC Z∈ , such that the fuzzy system s  

constructed by the group of fuzzy inference rules can approximate the 
continuous stochastic system s  to arbitrarily given precision. 

Proof.  We make a partition of interval [ ]3 3,Z a b=  as the following: 

3 0 1 3na z z z b= < < < = . 

Write 1 ( 1,2, , )i i iz z z i n−Δ = − =   and put the following symbol: 

{ }max 1,2, ,iz i nλ = Δ =  . 

Then we can get two Riemann sums as following: 

( ) ( )
1 1

, , , , ,
n n

i i i i i
i i

f x y z z z f x y z z
= =

Δ Δ  . 

From the condition of the theorem and Lemma 6.4.2, the following result 
is true: there exists a 1 0δ > , when  the real number 1λ δ< , then we 

have the following inequality: 
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( ) ( )
1

( , ) , , 0
n

i i
i

x y X Y f x y z z
=

 ∀ ∈ × Δ > 
 
 . 

So we have the following result: 

( )

( )

( ) ( )

3

3

3

3

*

1

1

1 1

1 1

1

( , , ) d
( , ) | ,

( , , )d

, ,
( , , )

, , , ,

( , )
( , ) ,

( , )

i

i

j

b

a

b

a

n

i i i n
i i i

in n
i

i i j j
i j

n n
D i

i in D
i i

D j
j

f x y z z z
s x y E x y

f x y z z

f x y z z z
f x y z z

z
f x y z z f x y z z

x y z
z x y z

x y z

ζ ξ η

μ
μ

μ

=

=

= =

= =

=

= = = =

 
Δ  Δ ≈ =

 Δ Δ 
 

 
 Δ = =
 Δ 
 







 

 


 

where we have given the definitions as follows: 

( )

{ }

*

1

( , ) , , ,

( , )
( , ) ,

( , )

0,1, , ,

max ( , , ) ( , , )

i

i

i

j

D i

D i

nD

D j
j

x y f x y z M

x y z
x y

x y z

i n

M f x y z x y z X Y Z

μ
μ

μ
μ

=




Δ 
Δ 

=


∈ × × 










             (6.4.8) 

Clearly *, ( )i iD D X Y∈ × .  

For any given approximation precision 0ε > , since ( , , )f x y z  is  

continuous, from Lemma 6.4.3, 2 0δ∃ >  and 2 1δ δ< , when 2λ δ< , for 

all ( , )x y X Y∈ × , that the following inequality: 
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*

1

( , ) ( , )
2i

n

iD
i

s x y x y z
εμ

=

− <  

holds uniformly.  
By using the partition nodes ( 0,1, , )jz j n=  , construct 1n +  fuzzy 

sets ( 0,1, , )jC j n=   on Z , which form a fuzzy partition of Z , i.e. 

make a kind of fuzziness of the nodes ( 0,1, , )jz j n=  . And we put   

{ } { }1 , 1i iD i n C i n= ≤ ≤ = ≤ ≤  . 

Regarding   and   as linguistic variables, a group of fuzzy inference 
rules can be formed as follows: 

              If ( , )x y  is iD  then z  is iC , 1, 2, ,i n=  .               (6.4.9) 

We still use CRI method to make a fuzzy system s . First, from i-th 

fuzzy inference rule of (6.4.9), a fuzzy relation i i iR D C×  on the  

universe X Y Z× ×  is formed, where its membership function is the  
following: 

( , , ) ( , ) ( )
i i iR D Cx y z x y zμ μ μ= ∧ . 

Then a whole fuzzy inference relation 
1

n

i
i

R R
=

  is obtained as follows 

( )
1 1

( , , ) ( , , ) ( , ) ( )
i i i

n n

R R D C
i i

x y z x y z x y zμ μ μ μ
= =

= ∨ = ∨ ∧  

For any ( )D X Y∈ × , a fuzzy inference result ( )C Z∈  should be 

got by R , where C D R  , i.e. 

    ( )
( , )

( ) ( , ) ( , , ) ,C D R
x y X Y

z x y x y z z Zμ μ μ
∈ ×

= ∨ ∧ ∈ .     (6.4.10) 

For arbitrarily given an input ( ),x y X Y′ ′ ∈ × , the point ( ),x y′ ′   
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should be turned into a fuzzy set:  

( ){ },
( , ) ( , )D x y
x y x yμ χ′ ′ ′ . 

Substituting D′  into (6.4.10), we obtain result of reasoning ( )C Z′∈  

as follows: 

( ) ( )( )
1

( ) , , , ( ) ,
i i

n

C R D C
i

z x y z x y z z Zμ μ μ μ′ =
′ ′ ′ ′= = ∨ ∧ ∈  

It is easy to know that ( ) 0C zμ ′ > . Let  

3

3

3

3

( )d

( )d

b

Ca

b

Ca

z z z
z

z z

μ

μ

′

′

′ =



. 

And ( ),x y′ ′  is replaced by general point ( , )x y  in X Y×  and z′  by 

( , )s x y . So we get a function s : X Y Z× →  as follows: 

             
( )
( )

3

3

3

3

1

1

( , ) ( ) d
( , )

( , ) ( ) d

i i

i i

nb

D Ca i

nb

D Ca i

x y z z z
s x y

x y z z

μ μ

μ μ

=

=

 ∨ ∧  
 ∨ ∧  




 ,            (6.4.11) 

which is still called a fuzzy approximation system of S , or called a dou-

ble-input single fuzzy system, denoted by ( ), , ,s S X Y Z= ×   .  

Because for any ( , )x y X Y∈ × , we have 

( )3

3 1
( , ) ( ) d 0

i i

nb

D Ca i
x y z zμ μ

=

 ∨ ∧ >   , 

and by using Lemma 6.4.2, 3 0δ∃ > , when 3λ δ< , we have that, for any 

binary point ( , )x y X Y∈ × , the following inequality is true: 
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( )( )
1

1

( , ) 0
i i

n n

D C j j
i

j

x y z zμ μ
==

 ∨ ∧ Δ >  
 . 

Noticing the Riemann sum of (6.4.11) and iC  being with Kronecker 

property, we have the following result: 

( )( )
( )( )

1
1

1
1

1

1

1 1

1

( , )

( , )
( , )

( , )
( , )

( , ) ( , )

( , ) ,

i i

i i

j

i

j j

i

n n

D C j j j
i

j

n n

D C j j
i

j

n

D j j n
D ij

in n
i

D j D j
j j

n

iD
i

x y z z z

s x y
x y z z

x y z z
x y z

z
x y z x y z

x y z

μ μ

μ μ

μ μ

μ μ

μ ∗

==

==

=

=

= =

=

 ∨ ∧ Δ  ≈
 ∨ ∧ Δ  

Δ
Δ

= =
Δ Δ

=








 



 

where 

1

( , )
( , ) , 1, 2, ,

( , )

i

i

j

D i

nD

D j
j

x y z
x y i n

x y z

μ
μ

μ
∗

=

Δ
=

Δ
  . 

From Lemma 6.4.3, 4 0δ∃ >  and 4 3δ δ< , when 4λ δ< , for all binary 

points ( , )x y X Y∈ × , it uniformly holds that     

1

( , ) ( , )
2i

n

iD
i

s x y x y z
εμ ∗

=

− < . 

At last, if we take { }2 4min ,δ δ δ= , then when λ δ< , we have the  

following result:  

( )( )( , ) ( , ) ( , )x y X Y s x y s x y ε∀ ∈ × − <  
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This means that fuzzy system s  can approximate continuous stochastic 
system s  to arbitrarily givenε .                                                                

Remark 6.4.1 In the proof of the theorem, fuzzy sets iD  are formed by 

(6.4.8). In fact, we can also make them as follows: 

                          
( )

( )
1

, ,
( , )

, ,
i

i
D n

j
j

f x y z
x y

f x y z
μ

=


 ,                         (6.4.12) 

Based on (6.4.12), we can also prove the theorem. Here omits it. How-
ever, Theorem 6.4.1 is proved in such way.                                               

Example 6.4.1  Given a continuous stochastic system as the following: 

( )

3

, , ( , , ) ,

[0, 2 ],

1 sin sin sin
( , , )

8

s S X Y Z f x y z

X Y Z

x y z
f x y z

π

π

= ×
= = =

−=

 

Based on Theorem 6.4.1, we have the following equation and its image 
refers to Figure 6.4.2. 

( )
2

0
2

0

( , ) | ,

( , , ) d
sin sin .

( , , )d

s x y E x y

f x y z z z
x y

f x y z z

π

π

ζ ξ η

π

= = =

= = +


 

Now we consider constructing a fuzzy approximation system s . First 
make a partition of Z :  

0 1 2 9 100, 0.2 , 0.4 , , 1.8 , 2z z z z zπ π π π= = = = = ; 

then fuzzy sets ( 0,1, ,10)jC j =   are formed as Figure 6.4.3. The 

fuzzy sets ( , )
iD x yμ  are defined as the following equation (see (6.4.8)) 



234 Fuzzy Systems to Quantum Mechanics 
 

where 
3

1

4
M

π
= , which images refer to Figure 6.4.4.  

 
Fig. 6.4.2.  Output surface of the continuous stochastic system s  

 
 

 

Fig. 6.4.3.  Membership function curves of fuzzy sets 
j

C  

 

 , , 1
( , ) 1 sin sin sin

2 5

      i

i
D

f x y z i
x y x y

M
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We calculate the following binary function:  

( )
( )

102

0 1

102

0 1

( , ) ( ) d
( , )

( , ) ( ) d

i i

i i

D C
i

D C
i

x y z z z
s x y

x y z z

π

π

μ μ

μ μ

=

=

 ∨ ∧  =
 ∨ ∧  




 

which its function image refers to Figure 6.4.5, and the surface of the 
error ( , ) ( , )s x y s x y−  refers to Figure 6.4.6. 

 

 
Fig. 6.4.4.  Membership function surfaces of fuzzy sets

i
D  

 

 
Fig. 6.4.5.  Output surface of fuzzy system s  
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Fig. 6.4.6.  The error surface when 0.2λ π=  

 

If the partition nodes { }jz  are increased of double number, i.e.,  

0 1 2 200, 0.1 , 0.2 , , 2z z z zπ π π= = = = , 

then the approximation precision increases better, where the error surface 
of error function ( , ) ( , )s x y s x y−  refers to Figure 6.4.7. And if the par-

tition nodes { }jz  are increased more, then we can see that the error be-

tween ( , )s x y  and ( , )s x y  is very small from Figure 6.4.8. 
 

 
Fig. 6.4.7.  The error surface when 0.1λ π=  
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Fig. 6.4.8.  The error surface when 0.01λ π=  

6.5   Fuzzy Reasoning Representations of Discrete Stochastic Systems 

First we consider the single-input and single-output uncertainty system as 
( , )s S X Y= . Suppose that we have known some probability information 

about the system S . And we should be seeing about the system from sto-
chastic viewpoint.  

Let X  and Y  be measurable sets in real number space  , and input 
random variable ξ  and output random variable η  be defined in probability 

spaces ( )1 1, ,X P  and ( )2 2, ,Y P  respectively, where 1  and 2  are 

Borelσ -fields on X  and Y , respectively, and 1P
 
and 2P

 
be probability 

measures on 1  and 2 , respectively. As doing in section 6.1, we can con-

struct a joint probability space ( , , )PΩ  . Then ( , )ξ η  is a random vector 

on ( , , )PΩ  .  

Suppose that we have mastered the discrete probability distribution of the 
system as the following:  

( ){ }, 1 ,1i jP x y i n j m≤ ≤ ≤ ≤ , 

where [ ] [ ]1 1 2 2, , ,X a b Y a b= = , and 1 1 1na x x b≤ < < ≤ , and 
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0 2 1 2my a y y b< < < =  . 

Assume that ( ) ( )
1

{1, 2, , } , 0
m

i j
j

i n P x y
=

 
∀ ∈ > 

 
 . Write 

( ) ( )
( )

( )
1

1

,

|
,

m

i j j
j

i i m

i j
j

P x y y

s x E x
P x y

η ξ =

=

= =



 .                   (6.5.1) 

This is regarded as the response of S  after ix  is input. So, if we write 

the system as the following: 

( ){ }( ), , , 1 ,1i js S X Y P x y i n j m= ≤ ≤ ≤ ≤ , 

Then s  defined as (6.5.1) is called a discrete stochastic approximation 

system of the uncertainty S  or simply called a discrete stochastic  
system. 

Theorem 6.5.1  Given arbitrarily a discrete stochastic system as follows: 

( ){ }( ), , , 1 ,1i js S X Y P x y i n j m= ≤ ≤ ≤ ≤  

where [ ]1 1,X a b=  and [ ]2 2,Y a b=  are finite real number intervals, 

then there exists a group of fuzzy inference rules: 

                  If x  is jA  then y  is jB , 1, 2, ,j m=  ,                 (6.5.2) 

where ( )jA X∈  and ( )jB Y∈ , such that the fuzzy system s  con-

structed by the group of fuzzy inference rules can approximate the  
discrete stochastic system s  to some precision 0ε > , i.e.,  

( ) ( ) ( )( ){1,2, , } i ii n s x s x ε∀ ∈ − ≤ , 
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and the smaller is { }
1
max j

j m
yλ

≤ ≤
= Δ , the higher is precision, where  

1, 1,2, ,j j jy y y j m−Δ = − =  . 

Proof.  First of all, we consider how to make a group of fuzzy inference 
rules (6.5.2). One side, ( )jB Y∈  are easy to get. In fact, as the same 

as Figure 6.3.2 we can form “triangle waves” membership functions of 
the fuzzy sets, where subscript n  should be replaced by m . So the lin-

guistic variable { }1jB j m= ≤ ≤  is obtained. Other side, we have to 

make fuzzy sets ( )jA X∈ . For every {1, 2, , }j m∈  , we construct  

a group of fuzzy sets ( ) ( 1, 2, , )i X i nα ∈ =   as base functions as 

follows:  

( ) ( )

( ) ( )
( ) ( )

1

2 1 2 1 2

1 1 1

1 1 1

,     ,
( )

    0,                          otherwise;

,     ,

( ) ,     ,

0,                                   otherwise,

 2,3, ,

i

i i i i i

i i i i i

x x x x x x x
x

x x x x x x x

x x x x x x x x

i n

α

α

μ

μ
− − −

+ + +

− − ≤ ≤= 


− − ≤ ≤


= − − < ≤



= 

( ) ( )1 1 1

1;

,     ,
( )    

0,                                    otherwisen

n n n n nx x x x x x x
xαμ − − −

−

− − ≤ ≤= 
 .

 

Secondly, (6.5.1) is turned into the following: 

( )
( )

( )
( )

( )
1

1 1

1 1

,
,

,
, ,

m

i j j m m
i jj

i j ij jm m
j j

i j i j
j j

P x y y
P x y

s x y a y
P x y P x y

=

= =

= =

 
 
 = = =
 
 
 


 

 
 

where 
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( )
( )

1

,

,

i j

ij m

i j
j

P x y
a

P x y
=


 . 

And then by means of above the weighted mean of those fuzzy sets as 
being ( 1,2, , )i i nα =  , we form fuzzy sets jA  as follows:  

                 
1

( ) ( ), 1, , ,
j i

n

A ij
i

x a x j mαμ μ
=

=                     (6.5.3) 

where the group of weight vector as follows: 

( ){ }1 2, , , 1j j nja a a j m≤ ≤  

will be determined. Thus another linguistic variable set as follows: 

{ }1jA j m= ≤ ≤  

is regarded as being obtained, and we have got a group of fuzzy 
inference rules as (6.5.2) as follows                    

If x  is jA  then y  is ,jB  1,2, , .j m=   

As in the proof of Theorem 6.4.1, by CRI method, we can make a fuzzy 
system s : 

( )( )
( )( )

2

2

2

2

1

1

( ) d
( )

( ) d

k k

k k

mb

A B ja k

mb

A B ja k

x y y y
s x

x y y

μ μ

μ μ

=

=

 ∨ ∧  
 ∨ ∧  




 .                       (6.5.4) 

This means that we get a fuzzy approximation system of the uncertainty 
system S  as the follows:  

( ), , ,s S X Y=    
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Noticing the Riemann sum of (6.5.4) and jB  with Kronecker property, 

we have the following expression: 

( )( )
( )( )

1
1

1
1

1

1

( )

( )
( )

( )

       
( )

k k

k k

j

j

m m

A B j j j
k

j

m m

A B j j
k

j

m

A j j
j

m

A j
j

x y y y

s x
x y y

x y y

x y

μ μ

μ μ

μ

μ

==

==

=

=

 ∨ ∧ Δ  ≈
 ∨ ∧ Δ  

Δ
=

Δ









 

Since ( ) ( )( )( , ) {1, , } {1, , }
jA i iji j n m x aμ∀ ∈ × =  , we have the fol-

lowing equation: 

( )
( )

1 1

1 1

( )

( )

j

j

m m

A j j ij j j
j j

i m m

A j ij j
j j

x y y a y y

s x
x y a y

μ

μ

= =

= =

Δ Δ
≈ =

Δ Δ

 

 
.               (6.5.5) 

After comparing (6.5.1) and (6.5.5), we take ( ),ij i j ja P x y M y= Δ , 

where ( ){ }
( , )
min ,j i j

i j
M y P x yΔ . Let  

( ) ( ){ }max 1, 2, ,i is x s x i nε − =  . 

Then we at last get the following result:  

( ) ( ) ( )( ){1,2, , } i ii n s x s x ε∀ ∈ − ≤ . 

Besides, for any given 0ε > , from the equation (6.5.5), 0δ∃ > , when 

λ δ< , for all ( 1,2, , )ix i n=  , we have ( ) ( )i is x s x ε− < . Clearly, 

the more is λ , the higher is precision.                                                      
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We now turn to consider double-input single-output uncertainty sys-
tem ( , )s S X Y Z= × . Let ,X Y  and Z  be measurable sets in real num-

ber space   and input random variables ξ  and η  and output random 

variable ζ  be defined respectively in the probability spaces as the  

following: 

( ) ( ) ( )1 1 2 2 3 3, , , , , , , ,X P Y P Z P   , 

where 1 , 2  and 3  are Borel σ − fields on X ,Y  and Z , and 1P , 2P  
and 3P  are probability measures on 1 , 2  and 3 , respectively. We 

can also get the joint probability space ( , , )PΩ  in the same.  

So ( , , )ξ η ζ  becomes a random vector on ( , , )PΩ  . Suppose that 

we have known a discrete probability distribution:   

( ){ }, , 1 ,1 ,1i j kP x y z i n j m k p≤ ≤ ≤ ≤ ≤ ≤ , 

where [ ] [ ] [ ]1 1 2 2 2 2, , , , ,X a b Y a b Z a b= = = , and 

1 1 1

2 1 2

0 3 1 3

,

,
n

m

p

a x x b

a y y b

z a z z b

≤ < < ≤
≤ < < ≤

< < < =




 
 

Assume ( ) ( )
1

( , ) {1, , } {1, , } , , 0
p

i j k
k

i j n m P x y z
=

 
∀ ∈ × > 

 
  . Write 

( ) ( )
( )

( )
1

1

, ,
, ,

, ,

p

i j k k
k

i j i j p

i j k
k

P x y z z
s x y E x y

P x y z
ζ ξ η =

=

= = =



         (6.5.6) 

It is regarded as a response quantity after a input ( ),i jx y is input into the 

system S . Put  
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( ){ }( ), , , , 1 ,1 ,1i j ks S X Y Z P x y z i n j m k p= × ≤ ≤ ≤ ≤ ≤ ≤  

Then s defined by above expression is called a double-input single-

output discrete stochastic approximation system of S  or simply a  
double-input single-output discrete stochastic system.  

Theorem 6.5.2  Given a discrete stochastic system (6.5.7), where  

[ ] [ ] [ ]1 1 2 2 2 2, , , , ,X a b Y a b Z a b= = =  

are finite real number intervals, then there exists a group of fuzzy infer-
ence rules: 

               If ( , )x y  is kD  then z  is kC , 1,2, ,k p=  ,             (6.5.7) 

where ( )kD X Y∈ ×  and ( )kC Z∈ , such that the fuzzy system s  

constructed by the group of fuzzy inference rules can approximate the 
discrete stochastic system s  to some precision 0ε > , i.e.,  

( ) ( ) ( )( )( , ) {1, , } {1, , } , ,i j i ji j n m s x y s x y ε∀ ∈ × − ≤  . 

And the smaller is { }
1
max k

k p
zλ

≤ ≤
= Δ , the higher is precision, where  

1 ( 1, 2, , )k k kz z z k p−Δ = − =  . 

The proof is the same as one of Theorem 6.5.1, and we omit it.               

6.6  Reducibility in the Transformations between Fuzzy Systems 
and Stochastic Systems 

Take single-input single-output open-loop system ( , )s S X Y=  as an 

example to discuss the problem on reducibility in the transformations 
between fuzzy systems and stochastic systems. We only consider contin-
uous systems as discrete systems are special cases of continuous systems  
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and can be treated with no difficulty. Here [ ]1 1,X a b=  and [ ]2 2,Y a b=  

are finite real number intervals.  
First, suppose that we have known a fuzzy system as the following: 

( ), , ,s S X Y=   , 

where { }1iA i n= ≤ ≤  and { }1iB i n= ≤ ≤  are fuzzy partitions of 

X  and Y  respectively.   and  are regarded as linguistic variables, 
and we can get a group of fuzzy inference rules:  

If x  is iA  then y  is iB ,  1, 2, ,i n=  . 

For convenience, the group of fuzzy inference rules is simply denoted by 
the following: 

→  .                                        (6.6.1) 

By (6.6.1) we have the input output function of fuzzy system s : 

                  
( )
( )

2

2

2

2

1

1

( ), ( ) d
( )

( ), ( ) d

i i

i i

nb

A Ba i

nb

A Ba i

x y y y
s x

x y y

θ μ μ

θ μ μ

=

=

 ∨  =
 ∨  




,                  (6.6.2) 

where θ  is a fuzzy implication operator with the condition:  

( )( )( , ) [0,1] ( ,1) , ( ,0) 0a b a a aθ θ∀ ∈ = =                  (6.6.3) 

From above discuss, there exists a joint probability space ( , , )PΩ  , 

where X YΩ = × , 1 2= ×    and 1 2P P P= × , and random variables 

ξ  and η  are defined in probability spaces ( )1 1, ,X P  and ( )2 2, ,Y P . 

After redefining ξ  and η  in ( , , )PΩ  , a random vector ( , )ξ η  is ob-

tained, which obeys the probability distribution based on the following 
probability density: 
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( )

( )1 2

1 2

1

1

( ), ( )
( , ) ,

(2, , , )

(2, , , ) ( ), ( ) d d

i i

i i

n

A Bi

nb b

A Ba a i

x y
f x y

H n

H n x y x y

θ μ μ

θ

θ θ μ μ

=

=

∨
=

∨

 ∨ = ∨   
        (6.6.4) 

By (6.2.5), we can get a stochastic system ( ), , ( , )s S X Y f x y=  which 

input output function is as follows: 

2

2

2

2

( , ) d
( )

( , )d

b

a

b

a

f x y y y
s x

f x y y
=



. 

It is easy to know that above equation is the same as equation (6.6.2), 
i.e., ( ) ( )s x s x≡ . Now we show that ( , )f x y  defined by (6.6.4) can be 

returned into the original fuzzy inference rule group →  . In fact, by 
using original partition nodes 1 2 nx x x< < <  and 1 2 ny y y< < <  

of X  and Y , we get a fuzzy inference rule group, denoted by 

{ } { }1 1i iA i n B i n′ ′ ′′ ′= ≤ ≤ → = ≤ ≤  . 

First we put ( )( ) ,
iA ix f x y Mμ ′  , where  

{ }max ( , ) | ( , )M f x y x y X Y∈ × . 

It is easy to learn the following equation:  

( ){ }1( , )
max ( ), ( )

1

(2, , , ) (2, , , )

i i

n

A B
ix y X Y

x y
M

H n H n

θ μ μ

θ θ
=∈ ×
∨

= =
∨ ∨

 

So we have fact that (2, , , ) 1M H n θ⋅ ∨ = . It is easy to verify that, for 

any a natural number {1, 2, , }i n∈  , we have the following expression: 
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( ) ( )
1

( ), ( ),
( ) ( )

(2, , , )

j j

i i

n

A B
ji

A A

x yf x y
x x

M MH n

θ μ μ
μ μ

θ
=

′

∨
= = =

∨
. 

This means that ′=  . Constructing { }1iB i n′ ′= ≤ ≤  is simple 

and of some freedom since we only demand that they are a kind of fuzzi-
fication of the peak points ( 1, 2, , )iy i n=   and a partition of Y . Thus, 

we can directly take that , 1, 2, ,i iB B i n′ = =  . Then we have ′ =  . 

Thus we have reverted ( , )f x y  into the original fuzzy inference rule 

group →  . This is one side reducibility.  
Now we consider another side reducibility. Given a stochastic system 

as the following: 

( ), , ( , )s S X Y f x y= . 

We know that its input output function is as the following: 

2 2

2 2

( ) ( , ) d ( , )d
b b

a a
s x f x y y y f x y y=  . 

By Theorem 6.3.1, there exists a group of fuzzy inference rules →   

such that the fuzzy system ( ), , ,s S X Y=    constructed by →   

can approximate the stochastic system ( ), , ( , )s S X Y f x y=  to a given 

precision, i.e., ( ) ( )s x s x≈  (Notice that is not ( ) ( )s x s x≡ ), in other 

words,  

( )
0

( ) lim ( ) ( )x X s x s x
λ→

∀ ∈ = ,                          (6.6.5) 

where { }max 1,2, ,jy j nλ = Δ =  . These iA  can be made by using 

(6.3.4) or (6.3.9) and iB  can be taken as triangle waves membership 

functions referring to Figure 6.3.1. Then the input output function of the 
fuzzy system ( , , , )s S X Y=   , which is more general than one in 

(6.3.7), is as follows: 



 Fuzzy System Representations of Stochastic Systems 247 
 

( )
( )

2

2

2

2

1

1

( ), ( ) d
( )

( ), ( ) d

i i

i i

nb

A Ba i

nb

A Ba i

x y y y
s x

x y y

θ μ μ

θ μ μ

=

=

 ∨  =
 ∨  




, 

where the fuzzy implication operator θ  still needs to meet the condition 

(6.6.3). So we get a stochastic system ( ), , ( , )s S X Y f x y′= , where 

( )
1

( ), ( )
( , )

(2, , , )
i i

n

A B
i

x y
f x y

H n

θ μ μ

θ
=
∨

′ =
∨

. 

The meaning of (2, , , )H n θ ∨  is the same as before. We should consider 

two cases for the reducibility. 

Case 1: By (6.3.9), stipulate ( )( ) ,i iA x f x y M , then at the divi-

sion points ( 1, , )jy j n=   of Y , we have 

  

( ) ( )( )

( )

( )

1
( ),

,
(2, , , )

( ) ,

(2, , , ) (2, , , )

( ) , ,

i i

j

n

A B j
i

j

A j

j

x y
f x y

H n

x f x y

H n H n M

n f x y

θ μ μ

θ
μ

θ θ
α

=
∨

′ =
∨

= =
∨ ∨

=

                 (6.6.6) 

where 
1

( )
(2, , , )

n
H n M

α
θ ∨

 . For given a partition on Y , n  is fixed, 

so ( )nα  is constant. Equation (6.6.6) means that at every nodal point 

( 1,2, , )jy j n=  , ( ), jf x y′  is reverted to ( ), jf x y  under ignoring a 

constant factor ( )nα . Because h  can be decreased arbitrarily, ( , )f x y′  

should be regarded as having been reverted to ( , )f x y under ignoring a 

constant factor.  
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Case 2: Suppose that ( 1,2, , )jy j n=   of Y  are equidistant as the 

following: 

( )( ){1, 2, , } jj n y λ∀ ∈ Δ = . 

By (6.6.4), we stipulate the following symbol: 

( )
( )

1

,
( )

,
i

i
A n

j
j

f x y
x

f x y
μ

=


 , 

then at the nodal points ( 1,2, , )jy j n=   of Y , we have the following 

equation: 

( ) ( )( )

( )
( )

( )
( )

( ) ( )

( )

1

1

1

|

( ),
,

(2, , , )

( ) ,

(2, , , ) (2, , , ) ,

,

(2, , , ) ,

, ,
( ) ( )

( )( , )d

( )

i i

j

n

A B j
i

j

A j

n

i
i

j

n

i
i

j j

Y

x j

x y
f x y

H n

x f x y

H n H n f x y

f x y

H n f x y

f x y f x y

f xf x y y

h f y x

ξ

η ξ

θ μ μ

θ
μ

θ θ

λ
θ λ

β λ β λ

β

=

=

=

=

∨
′ =

∨

= =
∨ ∨

= ⋅
∨

≈ =

=







          (6.6.7) 

where ( ) (2, , , )H nβ λ λ θ ∨ , which is constant under given a parti-

tion on the universe Y , ( ) ( , )d  Y
f x f x y y  is marginal probability 

density, and | ( | ) ( , ) ( )xf y x f x y f xη ξ ξ=   is conditional probability 
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density. Based on above equation, ( , )f x y′  should be regarded as  

having been reverted to the conditional probability density | ( | )xf y xη ξ =  

under ignoring a constant factor.   

Remark 6.6.1  In ( ) (2, , , )H nβ λ λ θ ∨ , it is easy to learn that two 

parameters λ  and n  are correlative each other. So ( )β λ  can also be 

written as ( )β λ , but not written as ( , )nβ λ .                                           

Remark 6.6.2  Noticing that ( , )f x y′  is a continuous function, from 

numerical analysis and based on (6.6.6), we can easily learned that
( , )f x y′ can be regarded as a interpolation function with the node group  

( )( ){ }, ( ) , 1,2, ,j jy n f x y j nα =  . 

At every node , 1, 2, ,jy j n=  , ( , )f x y′  is strictly equal to the nodal 

function value ( )( ) , jn f x yα . There is similar understanding about the 

Equation (6.6.7).                                                                                         

6.7  Uncertainty Systems with One Dimension Random Variables 
and their Representations 

From above sections in this article, we can find a situation that the prob-
ability density function with respective to uncertainty systems are at least 
two-dimensional, i.e. the random vectors we dealt with are at least two-
dimensional, say ( , ),ξ η  where ξ  is in essence defined on input uni-

verse X  and η  on output universe Y . This is not strange because an 

uncertainty system is at least of one input variable x X∈ and one output 
variable y Y∈ . However when we learn probability theory and its  

applications, random variables with respective to a lot of random exper-
iments are one-dimensional, say ξ , and if it has probability density func-

tion, it is a one-dimensional function, say ( )f x . 

Naturally we should ask such a question: What kind of uncertainty 
systems are only with respective to one-dimensional random variables, or 
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one-dimensional probability density functions? We can guess that such 
uncertainty systems may have some special characteristics or trivialities. 
And such uncertainty systems may have many cases. We can only dis-
cuss several typical cases.  

Typical case 1: Pure certainty systems.  
As a Cantor’s set can be regarded as a fuzzy set, certainty systems can 
also be regarded as special uncertainty systems. Now we consider a  
special open loop system ( , )s S X Y= , where [ , ]X a b=  and that 

{ }0Y y=  is a singleton. We have known that the symbol s  has double 

meanings, i.e. it not only abstractly represents the system, but also means 
the relation between input and output of the system: 

0: , ( )s X Y x y s x y→ =  . 

Since ( ) ( )0( )x X s x y∀ ∈ = , this is a special certainty system, and also 

a trivial system, and its output is a step function. 
We will use CRI method to construct its fuzzy approximation system. 

First make a partition of :  

1 2 na x x x b= < < < = . 

Then these nodes ( 1, 2, , )ix i n=   are fuzzified as Figure 6.3.1 to ob-

tain fuzzy sets ( ) ( 1, 2, , )iA X i n∈ =   (note that these 1n +  sub-

scripts 0,1, ,n  should be changed to n  subscripts 1,2, , n ). So a 

fuzzy partition of  is got as { }1, 2, ,iA i n= =  . The fuzzy sets 

on  are easily formed as the following: 

{ }0 , 1, 2, ,iB Y y i n= =  . 

Thus a fuzzy partition of is also got as { }1, 2, ,iB i n= =  . This 

means that we have a fuzzy inference rule group: →  . Therefore a 
fuzzy approximation system is constructed as the following: 

X

X

Y

Y



 Fuzzy System Representations of Stochastic Systems 251 
 

{ }( )0[ , ], , ,s S X a b Y y= = =   . 

For simplification, fuzzy implication operator θ  is taken as ∧ . We have  
the following expression: 

( ) ( )0 01 1
( , ) , ( ) ( )

i i i

n n

A B A
i i

p x y p x y x y xμ μ μ
= =
 = = ∨ ∧ = ∨  . 

Then the input output relation should be the following: 

   0 0( ) , d , d  Y Y
s x yp x y y p x y y . 

Let  0(1, , , ) , d   X
H n p x y x , and it is easy to know the fact that 

the integral ( )0, d 0.
X

p x y x >  So we can put 

( ) ( )0 1
0

( ),
( ) ,

(1, , , ) (1, , , )
i

n

A
i

xp x y
f x f x y

H n H n

μ
=
∨

= =
∧ ∨ ∧ ∨

 .          (6.7.1) 

So there should exist a random variable : , ( )X x xξ ξ→   defined 

on the probability space ( , , )X P , to obey a probability distribution 

with probability density function ( )f x , where   is a Borel σ − field 

on X . It we let { }0X yΩ × , then  can be regarded as a Borel σ −
field on . And ξ  can be regarded as a random variable defined on , 

i.e. without changing symbol re define as follows:  

( ) ( )0 0: , , ( ) , ( )x y x y xξ ω ξ ω ξ ξΩ → = =  , 

and P  is also regarded as a probability on ( , , )PΩ  . Thus we get a 

stochastic system ( )( )0, , ,s S X Y f x y=  and and its input output rela-

tion is as follows: 

   0 0( ) , d , d  Y Y
s x yp x y y p x y y . 

Ω Ω
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Clearly, ( )( )( ) ( )x X s x s x∀ ∈ = , which is consistent with the result in 

Section 6.  

But    0 0( ) , d , d  Y Y
s x yp x y y p x y y  is only a formal represen-

tation, because Y  is a singleton and its measure is zero, and so for any a 
point x X∈ , we have the following equations: 

0 0( , )d 0, ( , )d 0  Y Y
yp x y y p x y y , 

which means that  

0

0

( , )d 0
( )

0( , )d
 

Y

Y

yp x y y
s x

p x y y
. 

Thus    0 0, d , d Y Y
yp x y y p x y y  is meaningless.  

It is not difficult to deal with. In fact, for any , is it easy to know 

that ( ) ( )( )0, 0x X p x y∀ ∈ > , and so, for any x X∈ ,  

     0 0

0 0
0 0 0, d , d , 0

 


 
   

y y

y y
p x y y p x y y p x y . 

Thus, for any x X∈ , we also have the following expression: 
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Besides, clearly, ( ) ( )( ) ( )x X s x s x∀ ∈ =  which means that, in this case, 

the fuzzy system s  constructed by CRI method can accurately approxi-
mate the system .  

Example 6.7.1  Consider an illumination system. For simplification, 
suppose that there is only one lamp in the system. Usually, we open the 
lamp in evening, and suppose that the time of opening the lamp is be-
tween a  and b . Let [ , ]X a b=  that is regarded as the input universe of 

the system. If we take x X∈ , then it means that the lamp is opened at 
time x , and the lamp emits light, which is denoted by a symbol, say 1. 

Naturally we can take { }0 {1}Y y= =  as the output universe. Clearly, the 

input output relation of the system is  

0: , ( ) 1s X Y x y s x y→ = =  . 

This is a pure certain system, of course. We have a reason to ask: Now 
that this is a certain system, why does there exist a random variable  

and a probability density function ( )f x  that  obeys?  In fact, if we 

focus our attention on “what time we should open the lamp in evening”, 
this becomes a stochastic problem. And this is not contrary with the  
certain input output relation  

0: , ( ) 1s X Y x y s x y→ = =  . 

You know, “what time we should open the lamp in evening” depends on 
many factors, such as different area leads different opening lamp time 
due to time difference. By using random experiment, we should know 
that opening lamp is round about at several time, such as about 5 o’clock, 
about 6 o’clock, about 7 o’clock, etc. Generally suppose that the lamp is 
usually opened at about 1x , about 2x , , about nx , and denote 1a x=  

and nb x= . If ( 1,2, , )ix i n=    are fuzzified to get fuzzy sets as the 

following: 

( ), 1,2, ,iA X i n∈ =  . 

Then we make fuzzy sets on  as the following 

s

ξ
ξ

Y
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{ } { }00 , ( ) ( ) ( )

1, 2, , ,
ii B Y yB Y y y y y

i n

μ χ χ= = =

=




 

and { }1, 2, ,iB i n= =   is formed. Thus we have a fuzzy inference 

rule group: →  , which means that we get a fuzzy system as  
follows: 

( ), , ,s S X Y=   . 

This come back to the way obtaining (6.7.1), and the rest is clear.           

Typical case 2: Pure stochastic systems.  
We consider another special open loop system , where the 

set { }0X x  is a singleton and [ , ]Y a b= , and its input output relation 

should be as follows 

( )0 0 0: ,s X Y x y s x→ = . 

Due to the uncertainty of the system, for the input 0x , we do not in ad-

vance know which 0y  in Y  should correspond to 0x . So ( , )s S X Y=  

is a pure stochastic system. After 0x  is input, by using statistic method 

there are several output to correspond to it: about 1y , about 2y ,… , 

about ny . After 0 1, , , ny y y  are fuzzified, we get fuzzy sets as the  

following: 

( ), 0,1, ,iB Y i n∈ =  , 

which are demanded to form a fuzzy partition of Y . Let  

{ } { }00 , ( ) ( ) ( )

1, 2, , ,
ii A X xA X x y x x

i n

μ χ χ= = =

=




, 

and denote { }1, 2, ,iA i n= =   and { }1, 2, ,iB i n= =   (not use 

0B ). Then a fuzzy inference rule group is got as →  . So we obtain 

( , )s S X Y=
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a fuzzy system ( ), , ,s S X Y=   . By CRI method, we have the fact 

as the following: 

( ) ( )0 01 1
( , ) , ( ) ( )

i i i

n n

A B B
i i

p x y p x y x y yμ μ μ
= =
 = = ∨ ∧ = ∨  . 

Because of the following facts: 

      0 0, 0 , (1, , , ) , d 0,      Y
y Y p x y H n p x y y  

we can let 

( ) ( )0 1
0

( ),
( ) ,

(1, , , ) (1, , , )
i

n

B
i

yp x y
g y g x y

H n H n

μ
=
∨

= =
∧ ∨ ∧ ∨

              (6.7.2) 

Noticing that ( )0 , d 1
Y

g x y y = , the input output relation should be as the  

following: 

 
    10

0

0

( ) d, d
( ) , d

(1, , , ), d




     
 

 
i

nb

Ba i
Y

Y

Y

y y yyg x y y
s x yg x y y

H ng x y y
 

Therefore there should be a probability space ( , , )Y P  and a random 

variable η  defined on ( , , )Y P , which obeys the probability density 

function ( )g y , where   is a Borel σ − field on Y .  

If we put { }0x YΩ × , then   can regarded as a Borelσ − field on, 

η  as a random variable defined on , and P  as a probability on 

( , , )PΩ  . Thus we get a stochastic system as follows: 

( )( )0, , ,s S X Y g x y= , 

which its input output relation is also as the following: 

Ω
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0
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,
( )

,
 

Y

Y

yp x y dy
s x

p x y dy
. 

Now let 1 ( 1,2, , )j j jy y y j n−Δ − =  . We have the following  

result: 
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( ) d, d

, d ( ) d
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j jn n
j

B j j
i

j

j j

y y yp x y y y
s x

p x y y y y

y y y y y

a y
b ay y

a y b a j n

μ

μ

μ

μ

=

=

== =

=

==

 ∨  = =
 ∨  

 ∨ Δ Δ  ≈ = =
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             (6.7.3) 

So ( )0s x  corresponding to 0x  is approximately equal to the weighted 

average of 1 2, , , ny y y .  

Especially, when the partition 0 1 na y y y b= < < < =  is equidistant, 

i.e. ( 1, , )jy h j nΔ = = , we as well as have the following result: 

( )
( )
( )

( )

( )

0

0

0

1
1 1

1
1

, d

, d

i

i

Y

Y

n nn

B j j j j
i

j j

n n

B j ji
j

p x y y y
s x

p x y y

y y y y

ny y

μ

μ

== =

==

=

 ∨ Δ  ≈ =
 ∨ Δ  




 



                  (6.7.4) 
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i.e. 0( )s x  corresponding to 0x  is approximately equal to the arithmetic 

average of 1 2, , , ny y y .   

Example 6.7.2  Consider a shooting practice system. For simplification, 
suppose that there is only one gun in the system. Every experiment, i.e. 
every shooting, only one bullet is shot to a target and the bullet is denot-

ed by 0x . Because the same kind of guns shoot the same kind of bullets 

and the bullets in the same kind of bullets are all regarded as 0x , we get 

the input universe of the system as { }0X x . Every shooting, that the 

bullet 0x  is shot to the target is regarded as putting an input to the sys-

tem, and the point of impact in the target is thought as the response of the 

system to the input 0x . How to measure the system response? There are 

many methods. Here we take the distance between the point of impact 
y  and the center of the target as the output of the system. If we ignore 

missing the target of shooting, the distance between the point of impact 
and the center of the target is surely bounded. A felicitous upper bound  
is denoted by b, for example, b may be the distance between the center 
of the target and the edge of the target. The lower bound of the distance 
between the point of impact and the center of the target is clearly zero, 
denoted by 0a = . And we get a output universe [ , ]Y a b= . Since we 

do not in advance know which 0y  in Y  should correspond to 0x  when 

0x  is put into the system as an input, this is a pure stochastic system. 

Suppose we test the shooting level of a shooting team with n shooters. 
By some shooting practices, we can find the distances between the point 
of impact and the center of the target, of the n shooters, are respectively 

as about 1y , about 2y , , about ny . We can assume that  

0 1 na y y y b= < < < = . 

After 0 1, , , ny y y  are fuzzified to get fuzzy sets as the following: 
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( ), 0,1, ,iB Y i n∈ =  , 

which are demanded to be a fuzzy partition of Y , thus a class of fuzzy 

set as being { }1, 2, ,iB i n=   is formed. Then let  

{ } { }00 , ( ) ( ) ( ),

1, 2, , ,
ii A X xA X x x x x

i n

μ χ χ= = =

=




 

and { }1, 2, ,iA i n=  . So a fuzzy inference rule group →   

is got. And we obtain a fuzzy system ( ), , ,s S X Y=   . This come 

back to the way obtaining (6.7.2), and the rest is clear.                             

We turn to discuss problems of fuzzy reasoning representations with 
one dimensional random variables and their approximations to the  
stochastic systems. Also two typical cases are considered.     

Typical case 1*: This case is the contraposition of above typical case 1. 
Given a stochastic system  

{ } ( )( )0 0, , ( ) ,s X Y y f x f x y=   , 

this means there are a probability space ( , , )PΩ   and a random varia-
ble ξ  defined on ( , , )PΩ   obeys probability density function as the 

following: 

( )0( ) ,f x f x y , 

where { }0X yΩ × . From above discussion, we know that the input 

output relation of the system is as the following: 

( )
( )

( )

( )

0

0

0

0

00 0

00
0 0

, d, d
( ) lim

, d , d

y

yY
y

Y y

f x y y yf x y y y
s x y

f x y y f x y y

ε

εε

+

+→
= = =


 

, 

where ( ) ( )( )0, 0x X f x y∀ ∈ >  is supposed, and so 



 Fuzzy System Representations of Stochastic Systems 259 
 

( ) ( )( )0

0
0, d 0

y

y
x X f x y y

ε+
∀ ∈ > . 

Make a partition of X : 1 2 na x x x b= < < < =  and the nodes ix  are 

fuzzified to get fuzzy sets ( )iA X∈ , which are demanded to be a 

fuzzy partition of X . And we let  

{ } { }00 , ( ) ( ) ( ),

1, 2, , .
ii B Y yB Y y y y y

i n

μ χ χ= = =

=




 

We can get two classes of fuzzy sets as the following: 

{ } { }1, 2, , , 1, 2, ,i iA i n B i n= =     . 

So we obtain a fuzzy inference rule group: →  . Thus a fuzzy sys-
tem as the follows is got  

{ }( )0, , ,s X Y y= =   . 

Because { }1, 2, ,iA i n= =   is a fuzzy partition of X , and we have

( ) ( )0 1
, ( ) 0

i

n

A
i

x X p x y xμ
=

 ∀ ∈ = ∨ > 
 

 

We can understand the following fact: 

( ) ( )( )0

0
0, d 0

y

y
x X p x y y

ε+
∀ ∈ > . 

So the input output relation of the fuzzy system is as follows: 

( )
( )

( )

( )

0

0

0

0

00 0

00
0 0

, d, d
( ) lim

, d , d

y

yY
y

Y y

p x y y yp x y y y
s x y

p x y y p x y y

ε

εε

+

+→
= = =


 

. 
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Clearly ( )( )( ) ( )x X s x s x∀ ∈ = , which means that the fuzzy system s 

can accurately approximate the stochastic system s. 

Typical case 2*: This case is the contraposition of above typical case 2. 
Given a stochastic system:  

{ } ( )( )0 0, [ , ], ( ) ,s X x Y a b g y g x y=    , 

this means that there are a probability space ( , , )PΩ   and a random 
variable η defined on ( , , )PΩ   obeys the probability density function 

( )0( ) ,g y g x y= , where { }0x YΩ × . Noticing that  

( )0 , d ( )d 1
Y Y

g x y y g y y= =  , 

from above discussion, we know that the input output relation of the sys-
tem is as the following: 

( )
( )
( )

( )0

0 0

0

, d
, d

, d

         ( ) d ( ),

b
Y

a

Y

b

a

g x y y y
s x g x y y y

g x y y

g y y y E η

= =

= =

 


 

where the output of the system 0( )s x  is just the mathematical expecta-

tion of random variable η: ( )E η .  

Theorem 6.7.1  Given a continuous stochastic system as the following: 

{ } ( )( )0 0, [ , ], ( ) ,s X x Y a b g y g x y= = = = , 

there must exist a group of fuzzy inference rules →  , where  

{ } { }1,2, , , 1,2, , ,

( ), ( ), 1,2, , ,

i i

i i

A i n B i n

A X B Y i n

= = = =

∈ ∈ =
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such that the fuzzy system s constructed by the group of fuzzy inference 
rules can approximate the continuous stochastic system s to arbitrarily 

given precision. 

Proof.  First we make a partition of Y  as the following: 

0 1 na y y y b= < < < =  

and triangle fuzzy sets as being 
* ( ), 0,1, ,iB Y i n∈ =  . Let  

{ }max ( ) |M g y y Y∈ . 

Then ( 0,1, , )iy i n=   are fuzzified to become fuzzy sets:  

* ( ) ( )
( ) , 0,1, ,i

i

B
B

y g y
y i n

M

μ
μ =  . 

Clearly ( ) ( 0,1, , )iB Y i n∈ =  . Put { }0 ( 1,2, , )iA x i n=  , and 

we should take the two classes of fuzzy sets as follows: 

{ } { }1, 2, , , 1, 2, ,i iA i n B i n= =      

We have a group of fuzzy inference rules as follows: 

→  . 

Then a fuzzy system as the following:  

{ }( )0 , [ , ], ,s X x Y a b= = =    

is got, which input output relation is as the following: 
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Because the Riemann sums of ( )0
, d

b

a
p x y y y∫  and ( )0

, d
b

a
p x y y∫  are 

respectively as the following: 

( ) ( ) ( ) ( )* *

1 11 1

, ,i i

n nn nj jj jB B

j j j
i ij j

g y g yy y
y y y

M M

µ µ
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and ( )
1

n

j jj

j

y yg y
=

∆  and ( )
1

n

jj

j

yg y
=

∆  are respectively the Riemann 

sums of the integrals ( ) d
b

a
g y y y∫  and ( )d

b

a
g y y∫ , based on Lemma 

6.3.3, for any given an approximation precision 0ε > , there must exist 
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0δ > , when { }1max 1, 2, ,i i iy y y i nλ δ−= Δ = − = < , we simulta-

neously have the following inequalities: 
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From these, it is easy to know that ( ) ( )0 0s sx x ε− < .                         

6.8   Unification on Uncertainty Systems 

In the chapter, an important fact is revealed that for arbitrarily given a 

fuzzy system ( ), , ,s S X Y=    there is a probability space 

( , , )PΩ   and a random vector ( , )ξ η  defined on ( , , )PΩ   such that 

( , )ξ η  obeys the probability density . Thus we can get a stochas-

tic system as the following: 

( ), , ( , )s S X Y f x y= . 

Then based on the conclusions of this paper, for arbitrarily given a sto-
chastic system as follows: 

( ), , ( , )s S X Y f x y= , 

we can always obtain a group of fuzzy inference rules →  such that 
a fuzzy system as the expression: 

( , )f x y
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( ), , ,s S X Y=    

can be formed by using →  . And above section tells us that there is 
reducibility in the transformations between fuzzy systems and stochastic 
systems. This means that fuzzy systems and stochastic systems are uni-
fied under system viewpoint. They look like two weights with same 
weight in the trays of a balance, one on a tray looking older and another 
one on other tray looking newer. Here older one means probability theo-
ry, and newer one is just fuzzy system theory. They have their special 
merits and support each other but no exclude. 

It is worthy of indicating that, for an uncertainty system, if you want to 
use probability theory to solve the problem, it is very difficult to get a 
kind of probability distribution, but you can try to use fuzzy system 
method to overcome it because obtaining a group of fuzzy inference 
rules is not so difficult, and sometimes it is easy. When you get a group 
of fuzzy inference rules, you can immediately transform the group of 
fuzzy inference rules into a probability density. So this is a very interest-
ing thing.   

6.9   Conclusions 

The present chapter has discussed a kind of united theory of uncertainty 
systems. As we know, the theories or methods dealing with uncertainty 
systems are usually of using probability theory and fuzzy set theory. It is 
interesting to communicate the relationship between probability theory 
and fuzzy set theory with respect to uncertainty systems. Firstly, we stud-
ied the probability representation problem of fuzzy systems in detail and 
indicated that there exists close relation between fuzzy systems and 
probability theory. Secondly, the fuzzy reasoning significance of stochas-
tic systems is revealed. The main results are as follows: 

1)  For arbitrarily given a stochastic system ( ), , ( , )s S X Y f x y= , 

we can always obtain a group of fuzzy inference rules →   such 

that a fuzzy system ( ), , ,s S X Y=    can be formed by using the  

fuzzy inference →   and s can approximate s to arbitrarily given 

precision.  
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2)  It is pointed out that there is reducibility in the transformations be-
tween fuzzy systems and stochastic systems. One side, under knowing a 

fuzzy system ( ), , ,s S X Y=   , the reducibility is complete. On the 

other side, under knowing a stochastic system ( ), , ( , )s S X Y f x y= , 

the reducibility is approximate. 
3)  One side, we have shown that for arbitrarily given a fuzzy system 

s, its fuzzy inference rule group →   can be transformed into a 
probability density f  of a stochastic system s. On the other side, the 

case is just opposite, i.e., for arbitrarily given a stochastic system s, its 
probability density f  can must be transformed into a fuzzy inference 

rule group →   of a fuzzy system s. Therefore, with respect to an 
uncertainty system, the probability density of the stochastic system and 
fuzzy inference rule group of the fuzzy system can be transformed each 
other. In other words, with respect to an uncertainty system, fuzziness 
and randomness are two different sides and regarded as two different de-
scription approaches, and they are in essence belonging to same thing: 
uncertainty. We may regard fuzziness and randomness as interlacing to-
gether, and it is hard to separate them into two self-governed parts. They 
look like two weights with same weight in the trays of a balance, one on 
a tray looking older and another one on other tray looking newer. Here 
older one means probability theory, and newer one is just fuzzy system 
theory. They have their special merits and support each other but no  
exclude. 

4)  For an uncertainty system, if you want to use probability theory to 
solve the problem, it is very difficult to get a kind of probability distribu-
tion, but you can try to use fuzzy system method to overcome it because 
obtaining a group of fuzzy inference rules is not so difficult, and some-
times it is easy. When you get a group of fuzzy inference rules, you can 
immediately transform the group of fuzzy inference rules into a probabil-
ity density. In this way, a lot of good tools in probability theory can be 
used to treat with the uncertainty system. So this is a very interesting 
thing.   

5)  Just with COG method, the relation between fuzzy systems and 
probability theory has been established. From the viewpoint of method-
ology, in a certain bound, one may use the method of probability  
theory to investigate fuzzy systems. From the viewpoint of philosophy, 
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uncertainty originally contains randomness as well as fuzziness.  
Randomness and fuzziness are often interwoven, so it is very difficult to 
divide up them. 
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Chapter 7  

The Normal Numbers of Fuzzy  
Systems and Their Classes 

7.1   Introduction 

 fuzzy sets are defined firstly in this chapter, which are regarded as 
the generalization of the Zadeh fuzzy sets. Then bounded fuzzy sets are 
defined, which are also regarded as the generalization of the Zadeh fuzzy 
sets and particular examples of  fuzzy sets. Based on a class of 
fuzzy sets, a fuzzy system is constructed by means of CRI method such 
that the connection between the input and the output of the system is just 
a quasi-interpolation function. And then, by suitably using several kinds 
of  fuzzy sets as fuzzy inference antecedents, several fuzzy systems 
are respectively obtained, such as the piecewise linear fuzzy system and 
Lagrange fuzzy system. Afterward, based on a particular class of 
fuzzy sets, a fuzzy system is constructed by also means of CRI method 
such that the connection between the input and the output of the system 
is just a generalized Bernstein polynomial. On generalized Bernstein 
polynomials, it is proved that generalized Bernstein polynomials are uni-
formly convergent in [ , ]C a b  under a weaker condition, and it is pointed 
out that there exist generalized Bernstein polynomials to be not conver-
gent in [ , ]C a b  by use of constructing a counterexample. A notion of 
normal numbers of fuzzy systems is defined here, which is regarded as 
an invariant on a fuzzy system; in other words, the normal numbers of 
fuzzy systems are able quantitatively holistically to describe fuzzy sys-
tems. Under the significance of the normal numbers of fuzzy systems, all 
fuzzy systems are able to be classified as three classes such as the normal 
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fuzzy systems, the regular fuzzy systems and the singular fuzzy systems. 
Based on another class of  fuzzy sets as fuzzy inference consequents, 
a kind of fuzzy system is constructed by still using CRI method such that 
the connection between the input and the output of the system is just a 
fitted function, although it is not suitable for the interpolation condition, 
it does have more approximate performance to actual uncertain systems. 
At last, on the assumption of the input universe partitions on the fuzzy 
systems being compatible, based on a class of  fuzzy sets, Hermite 
fuzzy systems are formed by CRI method too, and the collocation factor 
fuzzy systems are defined from Hermite fuzzy system, so that ability of 
modeling on uncertain systems is improved and application area of fuzzy 
systems is expanded. 

It is not difficult to understand that fuzzy systems are a sort of repre-
sentations to uncertain systems, especially to ones with fuzziness. What 
is a representation to an uncertain system? Generally speaking, so called 
a representation to a system is just to establish a mathematical model for 
the system. It is well-known that a differential equation is usually regard-
ed as a model for a given certain system, and under given conditions for 
determining solutions we are able to obtain a unique solution ( )y s x . 
In many situations, a solution ( )y s x  usually represents the connection 
between the input and the output of the system. If the system is denoted 
by S , then S  can be simply shown as Figure 7.1.1, where the input var-
iable x  takes values in an input universe X  and the output variable y  
takes values in an output universe Y . 
 

 
Fig. 7.1.1.  A single-input single-output open-loop system 

 
It is considering of how to model on the systems with fuzziness that 

Zadeh defined fuzzy sets and designed modeling method by means of 
fuzzy inference so that it is possible to make good models to such  uncer-
tain systems (for example, see [10–14,16–21]). Under the fuzzy infer-
ence significance, CRI method (consult [10]) was designed by Zadeh 
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which can be used for a system with fuzziness such that we are able to 
get a model to represent the connection between the input and the output 
of the system, in which connection is denoted by ( )s x  regarded as an 
approximate function to ( )s x  in Figure 7.7.1. Usually s  is called a 
fuzzy system in the narrow sense. In [11], ( )s x  is proved to be a certain 
interpolation function; especially under some conditions it is a piecewise 
interpolation function, that is 

0
( ) ( ) ( )

i

n

A i
i

s x s x x y


  ,                      (7.1.1) 

where ( 0,1, , )iA i n   are a group of antecedents of the fuzzy infer-
ence rules as follows: 

0 0

1 1

If       is      then      is   
                     or
If       is      then      is   
                     or
                   
                     or
If       is      then      is n

x A y B

x A y B

x A y



  nB













                (7.1.2) 

and iy  are the peak-points of the fuzzy sets iB  as the consequents of the 
fuzzy inference rules, which the peak-points mean the following equation: 

    {0,1, , } 1
iB ii n y   . 

The input variable x  takes values in an input universe X  and the output 
variable y  takes values in an output universe Y . 

The statement mentioned above means a fuzzy system usually is an in-
terpolation function. Whereas, from another point of view, we may find 
such meaning: given a piecewise interpolation function suiting with 
some conditions as the following:  
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1 1
0

: , ( ) ( )
n

n n i i
i

F X Y x F x x y 


   

there exists a group of fuzzy inference rules as (7.1.2) such that, based on 
the group of fuzzy inference rules, we are able to form a fuzzy system s  
by means of the CRI method, in which the connection ( )s x  between the 
input and the output of the system equates approximately or even accu-
rately to 1( )nF x  and the base functions ( ) ( 0,1, , )i x i n    in the 
interpolation meet the following condition: 

  {0,1, , } ( ) ( )
ii Ai n x x    . 

This suggests us concern with such a problem that, in numerical ap-
proximation theory, there exist  many interpolation methods (for example, 
see [3]) that all are able to form an interpolation function, denoted by 

1( )nF x , and for such every method, whether can we  make a group of 
fuzzy inference rules as the Expression (7.1.2) such that, based on the 
group of fuzzy inference rules, a fuzzy system s may be constructed in 
which the connection ( )s x  between the input and the output of the sys-
tem holds the equation as being 1( ) ( )ns x F x  or the equation 

1( ) ( )ns x F x ? This is one of motivations of this chapter. 
It is well known that the fuzzy system is a kind of approximation to 

certain or uncertain system. So, it is very interesting to analysis holisti-
cally and to describe quantitatively fuzzy systems from the view point of 
functional analysis, which is another motivation of this chapter. 

In order to solve the above problem, CRI method designed by  
Zadeh should be generalized to general case in which the antecedents 
and consequents are a special class of L-fuzzy sets. So, fuzzy refer-
ence based on L-fuzzy sets can be regarded as a generalization of one 
based on Zadeh fuzzy sets. In fact, L-fuzzy set was introduced by 
Gougen in [7] which is a generalization of Zadeh fuzzy set. Since 
then, different kinds of L-fuzzy sets are studied such as interval valued 
fuzzy sets [29], intuitionistic fuzzy sets [2], type-2 fuzzy sets [22] and 
so on. The toll set [5] over domain of discourse X which was studied 
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by Dubois and Prade is a mapping : [0, ) { }A X    . Since the 
set [0, ) { }L     with the order “ ” (the order of real num-
bers set  ) is a complete lattice, toll set is a special class of L-
fuzzy sets.  

In this chapter, we first introduce a class of L-fuzzy sets called   
fuzzy set as a kind of generalization of toll sets where we use the symbol 

{ , }    . Based on a class of  sets, a fuzzy system is 
constructed by means of CRI method such that the connection between 
the input and the output of the system is just a quasi-interpolation func-
tion. And then, by suitably using several kinds of  sets as fuzzy  
inference antecedents, several fuzzy systems are respectively obtained, 
such as the piecewise linear fuzzy system and Lagrange fuzzy system. 
Afterward, based on a particular class of  sets, a fuzzy system is con-
structed by also means of CRI method such that the connection between 
the input and the output of the system is just a generalized Bernstein pol-
ynomial. On generalized Bernstein polynomials, it is proved that general-
ized Bernstein polynomials are uniformly convergent in [ , ]C a b  under  
a weaker condition, and it is pointed out that there exist generalized 
Bernstein polynomials to be not convergent in [ , ]C a b  by use of con-
structing a counterexample. A notion of normal numbers of fuzzy sys-
tems is defined here, which is regarded as an invariant on a fuzzy system; 
in other words, the normal numbers of fuzzy systems are able quantita-
tively holistically to describe fuzzy systems. Under the significance of 
the normal numbers of fuzzy systems, all fuzzy systems are able to be 
classified as three classes such as the normal fuzzy systems, the regular 
fuzzy systems and the singular fuzzy systems. Based on another class of 
 sets as fuzzy inference consequents, a kind of fuzzy system is con-

structed by still using CRI method such that the connection between the 
input and the output of the system is just a fitted function, although it is 
not suitable for the interpolation condition, it does have more approxi-
mate performance to actual uncertain systems. At last, on the assumption 
of the input universe partitions on the fuzzy systems being compatible, 
based on a class of   sets, Hermite fuzzy systems are formed by CRI 
method too, and the collocation factor fuzzy systems are defined from 
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Hermite fuzzy system, so that ability of modeling on uncertain systems is 
improved and application area of fuzzy systems is expanded. 

This chapter is organized as follows. In section 7.2,  set is intro-
duced. In section 7.3,  implication operations are defined. In section 
7.4, the fuzzy systems based on  sets are discussed. In section 7.5, 
Normal numbers of fuzzy systems are introduced in order to discuss 
some analysis properties of fuzzy systems from functional analysis point 
of view. In section 7.6, Bernstein fuzzy systems are introduced, and the 
approximation properties of such fuzzy systems are discussed. In section 
7.7, fitted type fuzzy systems and Hermite fuzzy systems are discussed in 
section 7.7 and section 7.8, respectively. In section 7.9, the normal num-
bers of Hermite fuzzy systems is discussed. In section 7.10, weighed 
fuzzy sets are introduced. The conclusions are presented in section 7.11. 

7.2    Fuzzy Sets 

Given a nonempty universe X , a Zadeh fuzzy set A  on a set X  is a 
mapping : [0,1]A X  , where A  is called the membership function 
of A  and also denoted by the following symbol: 

  ( ) ( )Ax X A x x   , 

for us being more convenient. We know very well that [0,1] for the oper-
ations as the following: 

sup, inf, 1cx x      

should form an F-lattice (see [29]). It is taking notice of that the general-
ized real number set as the following: 

{ , }     , 

where   is well-known the field of real numbers, for the operations 
sup  , inf   and 1cx x , forms an F-lattice, too.  [0,1], ,   

is obviously isomorphic with  , ,  . In fact, we make a mapping as 

the following: 
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: [0,1], , , ,

,                     0;
( ) tan ( 0.5) ,  (0,1);

,                     1

f

x
x f x x x

x


    

 
  
 



 
 

It is easy to verify that the mapping is a bijection and keeping operations. 
So it is an isomorphic mapping. Now we define a complement operation 
in   as follows:  

: , ( ) cc x c x x x      . 

For any a point [0,1]x , we have the following facts: 

 

 

   

0 (1 ) (1) ( )

                       (0) [ (0)] [ ( )] ,

1 (1 ) (0) ( )

                      (1) [ (1)] [ ( )] ,

0 1 (1 ) tan (1 0.5)

                   ta

c

c c

c

c c

c

x f x f x f

f f f x

x f x f x f

f f f x

x f x f x x

         

   

         

   

       

   n (1 0.5) ( ) [ ( )]cx f x f x       

These mean that the mapping    : [0,1], , , , , ,f c c      is also 

an isomorphic mapping. So we can learn that  , , ,c   is a fuzzy  

lattice which is a kind of algebraic structure.  

Especially, for any , , , [ , ]c d c d c d   can also be a fuzzy lattice 
with respect to the operations , , c  . And we can prove the fact that the 

algebraic structure  [0,1], , ,c   is isomorphic with the algebraic struc-

ture  [0,1], , ,c  .  

In fact, if we make a mapping as the following: 



 The Normal Numbers of Fuzzy Systems and Their Classes  275 
 

   : [0,1], , , [ , ], , ,

               ( ) ( ) ,

f c c d c

x f x d c x c

    

  
 

then it is easy to know that f  is an isomorphic mapping, where the 

complement operation in  [ , ], , ,c d c   as follows: 

:[ , ] [ , ], ( ) cc c d c d x c x x d c x      

Of course we can verify the fact as the following: [0,1]x  , 

  (1 ) ( )(1 )

[( ) ] ( ) [ ( )] .

c

c

f x f x d c x c

d c d c x c d c f x f x

     

        
 

Generally speaking, if we let ( , , )L    be a complete lattice, then every 
mapping :A X L  is called an L-fuzzy set (see [7]), and the set of all 
such L-fuzzy sets is denoted by XL .   

When L  , the elements in the set:  :X A A X    are 

naturally called  fuzzy sets. In [28], the category of such generalized 
fuzzy sets with the degree set ˆ { }L      was researched, and 
the category is with good properties. For that reason mentioned above, 
we can and should generalize Zadeh’s fuzzy sets as follows. 

Definition 7.2.1  Given a nonempty universe X , a generalized real-
valued function :A X    is called an  fuzzy  set. The set of all 
the  fuzzy sets on X  is denoted by X . Particularly, when A  is a 
bounded function, A  is named a bounded fuzzy set, and the set of all the 
bounded fuzzy sets on X is denoted by ( )BF X .                                   

Apparently, ( ) XBF X   . Let A  be a bounded fuzzy set on X . 
Then there exist ,c d   with c d , such that :A X    can be 
shown as : [ , ]A X c d . When 0c   and 1d  , such bounded fuzzy 
sets will degenerate Zadeh fuzzy sets. 
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Example 7.2.1  Given a nonempty universe X , let 1c    and 1d  . 
Then the mapping : [ 1,1]A X    is a bounded fuzzy set.                  

Remark 7.2.1  In [25], a notion of the double branch fuzzy sets was  
defined as the statement: given a nonempty universe X, making a par-
tition for X as  0, ,X X X  , i.e., the sets 0, ,X X X   are not dis-

joint each other and 0X X X X    , so-called a double branch 
fuzzy set A means, when x X  , ( ) (0,1]A x  , when x X  , 

( ) [ 1,0)A x    and when 0x X , ( ) 0A x  . Clearly, a double branch 
fuzzy set is a particular bounded fuzzy set as shown as in Example 
7.2.1. As a matter of fact, for a bounded fuzzy set A as mentioned in 
Example 7.2.1, let 

 
 
 0

| ( ) (0,1] ,

| ( ) [ 1,0) ,

| ( ) 0

X x X A x

X x X A x

X x X A x





 

  

 







 

Then  0, ,X X X   forms a partition on X and the A is indeed a 

double branch fuzzy set.                                                                       

Remark 7.2.2  For a bounded fuzzy set : [ , ]A X c d , if we have the 
inclusion ( ) [0,1]A X  , then A degenerates a Zadeh fuzzy set.           

Example 7.2.2  Let [ , ]X a b   . Making a partition on X as the 
following: 

0 1 na x x x b     , 

we form the bounded fuzzy sets : [ , ]ijA X c d  as the following 

(their shapes are shown as Figure 7.2.1): 

   ( ) ,

;  , 0,1, , .
ij j i jA x x x x x

i j i j n

  

  
                        (7.2.1) 
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Clearly, we have ( ) ,ij ij ijA X c d    , where we have put: 

   min ( ) , max ( ) ,ij ij ij ijc A x x X d A x x X    

then the mappings : [ , ]ijA X c d  are significant.                              
 
 

 
 

Fig. 7.2.1.  A class of bounded fuzzy sets 
 

Now we reconsider the bounded fuzzy set : [ , ]A X c d . We are 
able to understand that the interval [ , ]c d  is a kind of description of 
membership degree for an element x X  belonging to a bounded fuzzy 
set A , only in which the scale by use of  [ , ]c d  is different to the one by 
using [0,1] . For example, when ( )A x d , it is regarded as that x  fully 
belongs to A , when ( )A x c , as that x  does fully not belong to A  
and when the situation: ( )c A x d  , as the membership degree is a 
number between c  and d . Especially, when 0c   and 0d  , that the 
value ( ) [0, ]A x d  means a degree that x does belong to A , and that 
the value ( ) [ , 0)A x c  means a degree that x do  does not belong to 
A . Of course, this is only one kind of interpretation, and there may 
be other ones. Actually membership meanings of ( )A x  should be 
defined in accordance with practical situations, so that the abilities 
for applications can greatly be improved. For the situation of 
fuzzy set :A X   , there is a similar interpretation.     
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7.3    Fuzzy Implication Operations 

Definition 7.3.1   A generalized binary real-valued function as follows 

: , ( , ) ( , )a b a b       

is called an  fuzzy implication operations, if 2[0,1]
  is a fuzzy impli-

cation operator.                                                                                           

Because the generalized real-valued functions are able to take their 
values in { } , in order to avoid making mistakes, we emphasize some 
common stipulations as follows: 

  
  
  

 

; ;
( ) ( );

( ) ;
(0, ) ;
[ ,0) ;

0 0 ;

| | ; ( ) ( ) ;
( ) ( ) .

x x

x x x

x x

x x

xx

        
    

       

     

     

       
       
    














 

Sometimes,   is simply denoted by  . Be carefully, such as the sit-
uations: ( ), ( ) ( )      , and so on are insignificant.  

Example 7.3.1  Suppose we take a binary function as the following 
form: 

: , ( , ) ( , )x y x y x y           

Then   is an   fuzzy implication operation. And let  

: , ( , ) ( , )x y x y x y           
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Then   is also an  fuzzy implication operation.                                 

Remark 7.3.1 In the chapter, we often use  relations and the bound-
ed fuzzy relations which are regarded respectively as particular ones of      
 sets and the bounded fuzzy sets. Besides, very like Definition 7.3.1, 

we are able to generalize T-norm and co-T-norm as  T-norm,  
 co-T-norm, the bounded T-norm and the bounded co-T-norm.         

7.4   Fuzzy Systems Based on  sets 

Now we again review the single input and single output fuzzy system 
with the input universe [ , ]X a b  and the output universe [ , ]Y c d . 
Suppose we have known a group of the input-output data as the  
following: 

  IOD , 0,1, ,i ix y i n    

with the partitions on the universes X  and Y , as the following: 

0 1

0 1 ... ,
... ,

n

n

k k k

a x x x b
c y y y d
    
    

 

respectively, where ( )ik i  and the mapping   is an ( 1)n    
elements permutation: 

0 1

0 1

n

n
k k k


 

  
 




. 

Let  

1

1

0

1,  0,1, , 1,
i i i n i

n

k k k k k
i

y y y i n y y
n





         

Then we construct the bounded fuzzy sets ( ) ( 0,1, , )iA BF X i n    

as fuzzy inference antecedents and the  fuzzy sets as follows: 
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, 0,1, ,Y
iB i n    

as fuzzy inference consequents, where the antecedent bounded fuzzy sets 
hold the normalizing condition:   

 
0

( ) 1
i

n

A
i

x X x


    
 
  

And in order to make the fuzzy inference consequent  fuzzy sets as 
being Y

iB  , we firstly form a group of the triangle wave fuzzy sets as 

being ( )
ikB Y  as the following (see Figure 7.4.1):   

   

   
   

1 0 1 0 1

0

1 1 1

1 1 1

, , ;
( )

0 ,                               otherwise,

,   , ;

( ) ,   , ;

0 otherwise;
       

i i i i i

i i i i i i

k k k k k
k

k k k k k

k k k k k k

y y y y y y y
B y

y y y y y y y

B y y y y y y y y
  

  

       

           
 ，　　            

   1 1 1

       1, 2, , 1,

,   , ;
( )

0,                    otherwise.
n n n n n

n

k k k k k
k

i n

y y y y y y y
B y   

 

       




 
 

 
Fig. 7.4.1.  Triangle wave fuzzy sets 

Then these iB  are expanded to be as the  fuzzy sets Y
iB   as the 

following: 



 The Normal Numbers of Fuzzy Systems and Their Classes  281 
 

 2( ) ( ) , 0,1, ,
i iB iBy x y i n     .               (7.4.1) 

It is not difficult to understand that every  21 iy  in Equation (7.4.1) 

plays such a role that every iB  is weighted by   21 iy  to become a iB .    
For the fuzzy inference consequents, the smaller is iy , the bigger is 

the number  21i iy   . So under the condition as the following: 

lim max 0in i
y


  , 

we have the following result: 

    2

0 0
lim lim lim

i i
i i i i in y y

B B B y y
    

     , 

where  iy   is called a  singleton, which means the truth val-
ue set of singletons is generalized from {0,1} to { , }  , i.e., 

   
,

( ) .
,i

i
y

i

y y
y Y y

y y

   

     
 

Absolutely we are able to regard it as reasonable. It is the time to 
give our fuzzy inference rules and they are as follows: 

If x  is iA  then y  is iB , 0,1, ,i n  .                  (7.4.2) 
From every rule in Expression (7.4.2), the  fuzzy inference rela-
tions as the following:  

 , , 0,1, ,i i iR A B i n    

are able to be determined, where θ is an  implication operator  
selected by us, that is  
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   , ( ), ( ) ,

0,1, , .
i i iR A Bx y x y

i n

   

 
                     (7.4.3) 

In the chapter, we often choose the  fuzzy implication operator as 
the form of   , and thus 

 , ( ) ( ),
0,1, , .

i i iR A Bx y x y

i n

   

 
                         (7.4.4) 

In [31], an idea of weighted fuzzy inference was discussed, and then 
some applications were researched in [27]. Here we will use such 
weighted fuzzy inferences to deal with our problem. As a matter of 
fact, there  fuzzy relations obtained in Equation (7.4.4) are aggregat-
ed by the weighted from to become a whole  fuzzy relations on all 

rules as Expression (7.4.2) as 
0

n

i i
i

R w R

  that is  

0 0
( , ) ( , ) ( ) ( )

i i i

n n

R i R i A B
k k

x y w x y w x y   
 

              (7.4.5) 

These iw  represent for the portions of the  fuzzy inference relations 

iR  to occupy in the whole   fuzzy inference relation R , respective-
ly. Here we take the weights as follows:  

0

, 0,1, , .i
i n

k
i

yw i n
y




 


                        (7.4.6) 

We take notice of these iw  are just iy  essentially respectively, and 

that 
0

n

k
k

y


  plays only a normalizing role for the weights. Clearly 

ky  shows a subinterval of the universe [ , ]Y c d  taken up by i-th 
inference rule. It is easy to learn that, the bigger the subinterval is  
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taken up, the more important the fuzzy inference rule possesses in 
the whole. So we think of such a selection for the weights is indeed  
reasonable.  

We should notice the difference between these weights iw  and those 

weights  21i iy   , mentioned above. The former is on the i-th in-

ference rule, and the latter is only on the consequent iB  of the i-th infer-
ence rule, which is with different meanings. Moreover, the  fuzzy 
relation R  is a  fuzzy set on    , i.e., [ , ] [ , ]a b c dR  . For the 
use of the  fuzzy inference relation, we denote two symbols as the 
following: 

 

 
0

0

sup ( , ) ( , ) [ , ] [ , ]

sup ( ) ( ) ( , ) [ , ] [ , ] ,

inf ( , ) ( , ) [ , ] [ , ]

inf ( ) ( ) ( , ) [ , ] [ , ] .

i i

i i

R

n

i A B
k

R

n

i A B
k

M x y x y a b c d

w x y x y a b c d

m x y x y a b c d

w x y x y a b c d



 



 





 

 
   

 
 

 
   

 








 

For the requirements in what follows, we introduce a new concept, 
quasi-interpolation functions. So-called a quasi-interpolation function 

1( )nF x  means it holding the conditions as the following: 
1)  1( )nF x  is a linear combination of the group of base functions 

as the following: 

 ( ) 0,1, ,
iA x i n   , 

i.e., there exists a group of real numbers  0,1, ,ic i n    such 

that  

1
0

( ) ( )
i

n

n A i
i

F x x c


 ; 
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2)    {0,1, , } i ii n c y   . 

Clearly we know that, only with above two conditions, well-known 
interpolation condition: 

    1{0,1, , } n i ii n F x y   , 

cannot be met yet. It is easy to see the fact that, if the group of base 
functions  ( ) 0,1, ,

iA x i n    satisfies Kronecker condition: 

  1,   ;
0,  ,

, 0,1, ,

i j

i j
A x

i j
i j n


  

 
 

then that 1
0

( ) ( )
i

n

n A i
i

F x x y


  holds the interpolation condition. 

Theorem 7.4.1  By still using notations and notions mentioned 
above, based on the group of fuzzy inference rules as Expression 
(7.4.2), a fuzzy system s  is obtained by means of CRI method is ap-
proximately equal to a quasi-interpolation function in which its basis 
functions are just the bounded fuzzy sets  ( ) 0,1, ,

iA x i n   , as 

the following 

1
0

( ) ( ) ( )
i

n

n A i
i

s x F x x y


  .                           (7.4.7) 

Proof.  By CRI method, from the  fuzzy inference relation R (see 
Equation (7.4.5)), a  fuzzy transformation “◦” is induced as  
follows  

    
: ,

( ) ( ) ( , )

X Y

B A Rx X

A B A R

y Y y x x y  




    

      ，
            (7.4.8) 
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For any a point x X  , denoting the following  fuzzy set: 

,    ,
( )

,      ,A

M x x
x

m x x
 





 



  

and being substituted in Equation (7.4.8), we get a fuzzy inference 
consequent YB   as the following  

 

 

* *

*

0

( ) ( ) ( , )

          ( )
i i

RB Ax X
n

i A B
i

y x x y

w x y

  

 





  


                     (7.4.9) 

If the following conditions are satisfied 

* *( ) d , 0 ( ) d
B BY Y

y y y y y       ， 

then we are able to obtain a corresponding point y Y   with respect to 
the given point x , i.e.,  

( )d

( )d








  


BY

BY

y y y
y

y y
, 

by using the barycenter method. Because x  is arbitrary, above  
expression should be generalized as the following 

 
0

( ) d
,

( )d

( ) ( ) ( ) .
i i

BY

BY

n

B i A B
i

y y y
y

y y

y Y y w x y





  




    
 





           (7.4.10) 

In accordance with the significance of Riemannian Sum in the definition 
of definite integral, we have the following equation: 
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0

0

0

0

( ) d

( )d

  

i i i

i i

n

B k k k
B iY

n
BY B k k

i
n

i B i i
i

n

B i i
i

y y yy y y
y

y y y y

y y y

y y



 














 









 





             (7.4.11) 

Since the bounded fuzzy sets  ( ) 0,1, ,
iA x i n    hold the normal-

izing condition: 
0

( ) 1
i

n

A
i

x


 , by Equations (7.4.1) and (7.4.6), we 

know the fact that 

   

 

0

2

0

( )

1 1( ) ( ).

k k

i i

n

B i i i k A B i
k

i i A An
i

k
i

y y y w x y

y w x x
y y

  

 





  

  
 





 

Thus Expression (7.4.11) can be shown as follows 

 

 

0
0 0

0 0
0

0

0

0

1 ( )

1 ( )

( )
  ( )

( )

i

i

i

i

i

n
n

A ini B i i i ki k
n n

B i i An
i i kk
n

A i n
i

A in
i

A
i

x yy y y y
y

y y x
y

x y
x y

x



 







 

 








 
 




 

 
 








          (7.4.12) 

Substituting ( )s x  for y  and taking the function as the following: 
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1
0

( ) ( )
i

n

n A i
i

F x x y

 , 

we have the following result: 

1
0

( ) ( ) ( )
i

n

n A i
i

s x F x x y


  ,                      (7.4.13) 

This is the end of our proof.                                                                □ 

Example 7.4.1  From the partition of the universe X  as the following: 

0 1 ... na x x x b     , 

the bounded fuzzy sets as the antecedents of fuzzy inference rules are 
formed as the following: 

      
      

0

0 1 1

0 1 1

( )

,

0,1, , .

i

n
j

A
j i j
j i

i i n

i i i i i i n

x x
x

x x

x x x x x x x x
x x x x x x x x

i n





 

 






   


   





 
 



       (7.4.14) 

From Fundamental Theorem of Algebra, it is easy to know the fact that  

0 0 0
( ) 1

i

nn n
j

A
i i j i j

j i

x x
x

x x


  



 

  . 

So the connection between the input and the output of the fuzzy system 
s  constructed just above is approximately equal to a quasi-interpolation 

function in which its base functions are just the group of functions as 

being  
0

( )
i

n

A i
x


, i.e.,  
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1
0 0 0

( ) ( ) ( )
i

nn n
j

n A i i
i i j i j

j i

x x
s x F x x y y

x x


  



  

              (7.4.15) 

Because the bounded fuzzy sets   0

n
i i

A


 here are typical Lagrange inter-

polation basis functions, that hold Kronecker condition, the following 
function:  

1
0 0

( )
nn

j
n i

i j i j
j i

x x
F x y

x x
 






  

is just an interpolation function. Such fuzzy systems are called by us  
Lagrange Fuzzy Systems.                                                                      □ 

Example 7.4.2  From the partition of the universe   as the following: 

0 1 ... na x x x b     , 

the bounded fuzzy sets as the antecedents of fuzzy inference rules are 
formed as the triangle wave Zadeh fuzzy sets very like Figure 7.4.1 as 
the following: 

     

     
     

     

0

1 0 1 0 1

1 1 1

1 1 1

1 1 1

,   , ;
( )   

0, otherwise;

,   , ;

( ) ,   , ;
0,   otherwise;

1, , 1,
,   , ;

( )
0,

i

n

A

i i i i i

A i i i i i

n n n n n
A

x x x x x x x
x

x x x x x x x

x x x x x x x x

i n

x x x x x x x
x







  

  

  

    

   


   



 

  




　　          

　　          

　　     
 

    otherwise;


      

 

Clearly 
0

( ) 1
i

n

A
i

x


 . So the connection between the input and the out-

put of the fuzzy system s  constructed just above is approximately equal 
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to a quasi-interpolation function in which its base functions are just 

those membership functions as being  
0

( )
i

n

A i
x


, i.e., 

1
0

( ) ( ) ( )
i

n

n A i
i

s x F x x y


  .                            (7.4.16) 

Apparently the group of base functions,  
0

( )
i

n

A i
x


, hold Kronecker 

condition. Thus that 1
0

( ) ( )
i

n

n A i
i

F x x y


  is just an interpolation func-

tion. So such fuzzy systems are called by us Piecewise Linear Fuzzy  
Systems.                                                                                            □ 

Example 7.4.3  On the input universe X , the bounded fuzzy sets as the 
antecedents of fuzzy inference rules are formed as the following: 

( ) ,

0,1, ,

i

i n i
i

A n
x a b xx C
b a b a

i n


            

 
                 (7.4.17) 

Clearly we know the fact :
0

( ) 1
i

n

A
i

x


 .  

So the connection between the input and the output of the fuzzy  
system s  constructed just above is approximately equal to a quasi-
interpolation function in which its basis functions are just those mem-

bership functions as being  
0

( )
i

n

A i
x


, i.e., 

1
0

0

( ) ( ) ( )
i

n

n A i
i

i n in
i
n i

i

s x F x x y

x a b xC y
b a b a








 

            




                      (7.4.18) 

□ 
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Remark 7.4.1  The fuzzy system s  as Equation (7.4.18) is called by us 
a Bernstein Fuzzy System. Particularly, when 0a   and 1b  , we have 

( ) ( ) (1 ) , 0,1 ,
i

i i n i
A nx C x x i n     , 

which are typical base functions from Bernstein polynomials.  

However here the base function group as being  
0

( )
i

n

A i
x


 does not 

hold Kronecker condition. It is not difficult to learn that the following 
function: 

1
0

( ) ( )
i

n

n A i
i

F x x y


  

is not an interpolation function but a quasi-interpolation function.         □ 

7.5   Normal Numbers of Fuzzy Systems 

In this section, we will discuss some analysis properties of fuzzy systems 
from functional analysis point of view.  

We still take account of the single input and single output open loop 
uncertain system as shown as Figure 7.1.1, i.e., 

: , ( )s X Y x y s x  . 

The group of  fuzzy inference rules describing the uncertain  
system is as Expression (7.4.2), that is,  

, 0,1, ,i iA B i n   , 

where X
iA   and ,Y

iB  0,1, ,i n  .  
In this chapter or even in this book, we often regard ( )A x  as the 

same as ( )A x , because ( )A x  is more convenient than ( )A x .  
By noticing that :iA X    and : , 0,1, ,iB Y i n   , we can 

know the fact as following: 



 The Normal Numbers of Fuzzy Systems and Their Classes  291 
 

   0, , :X
nA A f f X       

   0, , : .Y
nB B g g Y       

In X , we define the addition and the scalar multiplication operations 
respectively as follows: 

     
      

, ( )( ) ( ) ( ) ;

( )( ) ( ) .

X

X

f g x X f g x f x g x

f a x X a f x a f x

     

        

 

 
 

It is easy to know that  , ,X    is a linear space over the real num-

ber field  , and so  , ,Y    is. In the function spaces X and Y , 

the norm X
  and Y

  are defined respectively such that  ,  X
X

  

and  ,  Y
Y
  all become the normed linear spaces. Thus   and   

are able to be regarded as the subsets of the normed linear spaces X
and Y , respectively. So-called a group of fuzzy inference rules,  

, 0,1, ,i iA B i n   , 

is actually a transformation from a subset   of the normed linear 
space X   to a subset   of the normed linear space Y  , denoted by 

1nT  , i.e. 

 1 1: , ,
0,1, ,

n i n i iT A T A B
i n

 



 

 

                  (7.5.1) 

Whether can this transformation be expanded as a kind of trans-
formation from the normed linear space X  to the normed linear space 

Y ? If it can, then the transformation is denoted by the following  
mapping: 
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: , ( )X YT A B T A    . 

In fact this thing has already almost been done (see Equation (7.4.8)), 
i.e., T   . However T  is not a linear transformation but a nonlinear 
transformation. In other words, T  is not a bounded linear operator  
from the normed linear space  ,  X

X
  to the normed linear space 

 ,  Y
Y
 . Moreover, the transformation as Equation (7.4.8) has a  

bad property, that is, 1nT T  , or T  does not hold the following 

condition: 

    {0,1, , } i ii n T A B   . 

But this does not retard us to use the norms. As a matter of fact,  
although  i iT A B , the difference  i i Y

T A B  does describe the 

degree for  iT A  approximating iB , which means the transformation as 

Equation (7.4.8) is not an interpolation operator but is a fitted operator in 
accordance with Equation (7.5.1). 

In section 7.5, we have denoted [ , ] X a b  and [ , ]Y c d . that  
represent the input-output connection of the uncertain system shown as 
Figure 7.1.1 to be a function, as the following: 

:[ , ] [ , ],  ( )s a b c d x s x  . 

In fact, ( )s x  is usually a continuous function, i.e., [ , ]s C a b . So we 
take account of our problems in the space [ , ]C a b . Firstly, [ , ]s C a b  , 
a norm in [ , ]C a b is defined as follows: 

 max ( ) | [ , ]s s x x a b  . 

Reviewing the group of fuzzy inference rules as Expression (7.1.2), 
when iA  and iB  are all normal fuzzy sets which mean, ix X   and 

iy Y  , such that   1iA x   and   1iB y  , this shows us to know  

that, designing a group of fuzzy inference rules as Equation (7.1.2) and 
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obtaining a group of input-output data as being the following set: 

  IOD , 0,1, ,i ix y i n    

is almost a same thing, where this group of data should satisfy the 
following interpolation condition: 

    {0,1, , } i ii n y s x   .                        (7.5.2) 

So we can know that theorem 7.4.1 means the following equation: 

 1
0 0

( ) ( ) ( ) ( ) ( )
n n

n i i i i
i i

s x s x F x A x y A x s x
 

      

and we are able to get a bounded linear operator from  [ , ],  C a b   

to  [ , ],  C a b   as the following: 

 

1 1

1 1
0

: [ , ] [ , ], ( ),

( )( ) ( ) ( ) .

n n
n

n n i i
i

L C a b C a b s L s

L s x F x A x s x

 

 









                   (7.5.3) 

Based on this operator, a sort of numerical characters of the fuzzy 
systems shown in Theorem 1 can be described by the normal number 
of the operator as 1nL  , called by us Normal Numbers of fuzzy  

systems. 

Proposition 7.5.1  If the bounded fuzzy sets as the antecedents of fuzzy 
inference rules are [ , ], 0,1, ,iA C a b i n   , then the normal number 
of the fuzzy system is the following: 

1 [ , ] 0
max ( )

n

n ix a b i
L A x 



  ．                            (7.5.4) 

Proof.  Let 
0[ , ]

max ( )n
iix a b

M A x


  . One side we have the following  

inequality: 
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 1 [ , ] [ , ]0 0
( ) max ( ) max ( ) .

n n

n i i ix a b x a bi i
L s A x s x s A x M s    

 

     

So we get the following inequality: 

1 1
1

sup ( )n n
s

L L s M


  


  . 

On the other side, as 
0

( ) [ , ]
n

i
i

A x C a b


 , there must exist a 0 [ , ]x a b  

such that  

 0
0

n

i
i

A x M


 . 

Choosing a 0 [ , ]s C a b  such that 0 1s

  and  

      0{0,1, , } sgni i ii n s x A x   , 

i.e., 0 ( ) 1s x  , we have the following expression: 

 

    

     

1 1 1 0
1

1 0 1 0 0
[ , ]

0 0
0 0

sup ( )

sup ( )

sgn ,

n n n
s

n n
x a b

n n

i i i i
i i

L L s L s

L s x L s x

A x A x A x M



   

 


 

 

 

   

 

Therefore, we get 1 [ , ] 0
max ( )

n

n ix a b i
L A x 



  .                                              

Remark 7.5.1  This means 1 [ , ] 0
max ( )

n

n ix a b i
L A x 



   is a center invariant, 

which its quantity is sometimes only depending on the partitions on the 
input universe X .                                                                             
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Example 7.5.1  When the bounded fuzzy sets ( 0,1, , )iA i n   as the 
antecedents of fuzzy inference rules are taken as the triangle wave fuzzy 
sets (see Example 7.4.2), the normal number of the fuzzy system has a 
unit quantity:  

1 [ , ] [ , ]0 0
max ( ) max ( ) 1

n n

n i ix a b x a bi i
L A x A x  

 

    .           (7.5.5) 

In what follows, a fuzzy system having the normal number with a unit 
quantity is called a Normal Fuzzy System.                                             

Example 7.5.2  When the bounded fuzzy sets ( 0,1, , )iA i n   as the 
antecedents of fuzzy inference rules are taken as Lagrange basis func-
tions as the following (see Example 7.4.1): 

0
( ) , 0,1, ,

n
j

i
j i j
j i

x x
A x i n

x x



 

  , 

the normal number of the fuzzy system has the following inequality (see 
[3]): 

1 [ , ] 0

2max ( ) ln( 1) 0.5212
n

n ix a b i
L A x n

 


   
 

Clearly 1lim nn
L 

  . This means Lagrange fuzzy systems are not 

the normal fuzzy systems. 
For general cases, we define that, when the bounded linear operator 

1nL   in Equation (7.5.4) is uniformly bounded, i.e., 

    10 sup 0,1,nM L n M     

the corresponding fuzzy systems are called Regular Fuzzy Systems, or else 
called Singular Fuzzy Systems. Apparently, the normal fuzzy systems  
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must be the regular fuzzy systems. Therefore, Lagrange fuzzy systems are 
not the regular fuzzy systems but the singular fuzzy systems.                    

Remark 7.5.2  For the bounded linear operator as the follows: 

[ , ]
1 [ , ]C a b

nL C a b   

i.e.,  1 [ , ], [ , ]nL B C a b C a b   as Equation (7.5.4), if it holds the  
following condition: for any a function [ , ]s C a b , 

    10 sup ( ) 0,1,s n sM L s n M 
    , 

then the linear operator 1nL   is called pointwise bounded. Because 
the function space [ , ]C a b  is a Banach space, by utilizing Resonance 
Theorem in functional analysis (see [6]): if a bounded linear operator 

1nL   is pointwise bounded, then 1nL    must be uniformly bounded. 
Thus, the bounded linear operator 1nL   in Lagrange fuzzy systems is 
not point-wise bounded, which means the following expression: 

    1[ , ] sup ( ) 0,1,ns C a b L s n 
     . 

In other words, there must exit a function ( )s x  in [ , ]C a b  such that the 
sequence of functions 1( )( )nL s x  does not converge to ( )s x . So when 
using Lagrange fuzzy systems, we should firstly verify their convergence. 

Actually, Runge had found the flaw as “singular” on Lagrange fuzzy 
systems (see [23]) and he gave a counterexample: considering a continu-
ous function in [ 1,1]C   as the following: 

2
1( )

1 25
s x

x



 

making an equidistant partition on [ 1,1]  as follows: 

21 , 0,1, ,i
ix i n

n
      



 The Normal Numbers of Fuzzy Systems and Their Classes  297 
 
straightaway from numerical values we are able to learn that v does not 
converge to ( )s x . For example, when 10n  , it is not difficult to  
calculate the following values: 

1 11( )( 0.96) ( )( 0.96) 1.80438,
( 0.96) 0.04160
nL s L s

s
    

 
 

We are able to see how big the difference between them in a neigh-
borhood at an endpoint.  

Similarly, the difference between 11( )(0.96)L s  and (0.96)s  is also 
big, in a neighborhood at another endpoint. If the counterexample 
given by Runge showed us a kind of no convergence of the interpola-
tion function only at endpoints, then ones must ask such a question: 
whether can we really find a continuous function [ , ]s C a b  such that  

1( )( )nL s x  does not converge to ( )s x  a. e. in [ , ]a b ?  
In fact, in [23], Bernstein for this thing had given a theorem: for the 

continuous function ( ) [ 1,1]s x x C   , by making an equidistant 
partition on [ 1,1]  as follows: 

21 , 0,1, ,i
ix i n

n
     , 

1( )( )nL s x  does not converge to ( )s x x  at any point in [ 1,1]   
except the three points: 1,0,1x   , with n   .                                

Example 7.5.3  When the bounded fuzzy sets ( 0,1, , )iA i n   as the 
antecedents of fuzzy inference rules are taken as Bernstein polynomi-
al basis functions as follows: 

( ) , 0,1, ,
i n i

i
i n

x a b xA x C i n
b a b a

            
 , 

or ( ) ( ) (1 ) , 0,1, ,i i n i
i nA x C x x i n     (see Example 7.4.1), the nor-

mal number of the fuzzy system has a unit quantity: 
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1 [ , ] [ , ]0 0
max ( ) max ( ) 1

n n

n i ix a b x a bi i
L A x A x   

     

So Bernstein fuzzy systems are the normal fuzzy systems.                 

Remark 7.5.3  It is easy to know that  0 1, , , nA A A  from Example 
7.4.1 to Example 7.4.3, is a group of 1n   linearly independent func-
tions in [ , ]C a b , and then a 1n   dimensional linear subspace of 

[ , ]C a b  as the following: 

 0 1span , , , [ , ]nA A A C a b , 

can be generated by  0 1, , , nA A A  as base functions of the linear 
subspace. This means, for an uncertain system, :s X Y , where the 
universes [ , ]X a b   and [ , ]Y c d   , ( )s x  is an undeter-
mined input-output connection in which ( )s x  is requested to be a 
continuous function, i.e., [ , ]s C a b .  

However, we only know a group of the input-output experiment data 
as   IOD , 0,1, ,i ix y i n    holding the interpolation condition as 

Equation (7.5.2) as follows:  

    {0,1, , } i ii n y s x   . 

From this group of basic data we can generate a group of fuzzy infer-
ence rules (also can see Equations (7.1.2) or (7.4.2)): 

                 ,  0,1, , ,i iA B i n                                (7.5.6) 

where ( 0,1, , )iA i n   are able to be the triangle wave fuzzy sets 
required of holding the double-phase property as the following: 

    1{0,1, , 1} ( ) ( ) 1i ix X i n A x A x        

or Lagrange base functions or Bernstein base functions, which are the 
bounded fuzzy sets and just forming the base functions of the function 
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space:  0 1span , , , nA A A , and the fuzzy sets  ( 0,1, , )iB i n   are 

shown as Figure 7.4.1. By function approximation theory (for example, 
see [3,23]), we know that, arbitrarily given [ , ]s C a b , for any 0  , 
there exists a group of fuzzy inference rules as Equation (7.5.6), that is 
equivalent to a group of input-output data as follows: 

  IOD , 0,1, ,i ix y i n  
, 

required of holding Equation (7.5.3), such that 1( )nL s s  
  . By 

noticing the fact that  

 1 0 1( ) span , , ,n nL s A A A   , 

we know that, for any function ( )f x  in the infinite dimensional func-
tion space [ , ]C a b , we are able to use a function in the finite  
dimensional function space as the following: 

 0 1span , , , nA A A  

to approximate it. This makes a part of fuzzy system analysis are able to 
be framed into the approximation theory of functions.                          

7.6   Bernstein Fuzzy Systems 

We have introduced Bernstein fuzzy systems in Example 7.4.3, and now 
we begin to discuss universal approximation of such fuzzy systems. The 
single input and single output open loop uncertain system shown as Fig-
ure 7.1.1 is still considered, here supposing that [ , ]X a b    and 

[ , ]Y c d   , in which we are able to assume that 0a   and 1b  , 

or else, we are able to make a kind of change of variable as 
x a

u
b a





, 

then [0,1]u .  Therefore, we regarded the input-output connection of  
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the system  :s X Y  as [0,1]s C . Assume that, for the information 
of ( )s x , we only learn a group of the input-output data as the following: 

  IOD , 0,1, ,i ix y i n    

holding the condition: 

    
0 10 1,
{0,1, , } .

n

i i

x x x

i n y s x

    

  




 

The bounded fuzzy sets ( ) ( 0,1, )iA BF X i n    as the antecedents of 
fuzzy inference are taken as the following: 

( ) (1 ) , 0,1, ,i i n i
i nA x C x x i n    .                 (7.6.1) 

Clearly  0 1, , , nA A A  is a group of linearly independent functions in 
the function space [0,1]C  and easy to know it holding the normalizing 

condition:
0

( ) 1
n

i
i

A x


 . The bounded fuzzy sets ( 0,1, , )iB i n   as 

the consequents of fuzzy inference rules are still taken as equation 
(7.6.1). Thus we get a group of fuzzy inference rules:  

, 0,1, ,i iA B i n   . 

From the group of fuzzy inference rules, by means of CRI method, 
a fuzzy system s  can be constructed to approximately be a General-
ized Bernstein Polynomial as the following 

 
0 0

( ) ( ) ( ; )

( ) (1 )

n
n n

i i n i
i i i n

i i

s x s x B s x

A x y s x C x x 

 

 

  
                 (7.6.2) 

This is a particular example of Example 7.4.2. It is well-known that a 
Bernstein polynomial is a polynomial as follows: 
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0

( ; ) (1 )
n

i i n i
n n

i

iB s x s C x x
n





   
 

 .                     (7.6.3) 

Be careful, in a Bernstein polynomial, the partition on [0,1]X   is 
equidistant as  

, 0,1, ,i
ix i n
n

   ; 

but in a generalized Bernstein polynomial ( ; )nB s x , the partition on the 
interval [0,1]X   is unnecessarily equidistant (see ix  in ( )is x  in 
equation (7.6.2)). Bernstein polynomial ( ; )nB s x  had been ever used 
to prove Weierstrass First Approximation Theorem, which means 

( ; )nB s x  can uniformly converge to ( )s x  on [0,1] , i.e.,  

lim ( ) 0nn
s B s


  . 

However we have such a question: whether can a generalized Bernstein 
polynomial ( ; )nB s x  uniformly converge to ( )s x  on [0,1] , too?  

The answer should be not. Now we concern with under some condi-
tion to prove the proposition: lim ( ) 0nn

s B s


  .  

How to give a right condition to make lim ( ) 0nn
s B s


   to be 

true?  
We think that, when we make a non-equidistant partition, the making 

cannot be too arbitrary and it should comply with some rule. What kind 
of rule? The rule should be that a non-equidistant partition must have 
some relationship with an equidistant partition. We deem that, consider-
ing the relationship between the non-equidistant partition points as being

( 0,1, , )ix i n   and the equidistant partition points ( 0,1, , )i i n
n

  , 

max ii

ix
n

  should not be over some proportion of 
1
n

 that is the  
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measure of every subinterval for an equidistant partition; so the expres-
sion is the following: 

1max , 0ii

ix
n n

      . 

Let [0,1]B  be the set of all bounded functions defined on [0,1] . We 
firstly in [0,1]B  take account of the convergence of generalized  
Bernstein polynomials ( ; )nB s x . 

Theorem 7.6.1 Let [0,1]s B  and that [0,1]x  be any continuous 
point of ( )s x . For any given real number 0  , if a partition on 
[0,1] , as being 0 10 1nx x x     , satisfies the condition:  

max ii

ix
n n


  , 

then n  th ( 1)n  generalized Bernstein polynomial ( ; )nB s x  converg-
es to ( )s x , i.e., 

lim ( ; ) ( )nn
B s x s x


 .                                (7.6.4) 

Proof.   Step 1. We firstly prove a useful inequality: for any 0  , and 
for any a point [0,1]x , we have the following inequality: 

2

2
4(1 )

2
i

i i i
n

x x

nC x x
n


 


  ,                             (7.6.5) 

where 
ix x  
  means to do sum for all i  that hold ix x   . In fact, 

as ix x   , we know that  2
2

1 1ix x


  . Thus  



 The Normal Numbers of Fuzzy Systems and Their Classes  303 
 

 

 

2
2

2
2 2

1(1 ) (1 )

1 (1 )

i i

i

i i n i i i n i
n i n

x x x x

i i n i
i n

x x

C x x x x C x x

nx nx C x x
n

 







 

   



 

   

  

 


 

 

 

 

2

2 2

2 2
2 2

2
2 2

2
2 2

1 (1 )

2 ( ) (1 )

2 (1 )

2  ( ) (1 )

i

i

i

i

i i n i
i n

x x

i i n i
i n

x x

i i n i
i n

x x

i i n i
n

x x

nx i i nx C x x
n

nx i i nx C x x
n

nx i C x x
n

i nx C x x
n



















 



 



 



 

    

      

  

  









 

For convenience, we use the following two symbols: 

 2
2 2

2
2 2

2 (1 ) ,

2 ( ) (1 )

i

i

i i n i
i n

x x

i i n i
n

x x

nx i C x x
n

i nx C x x
n











 



 

  

  








 

And it is not difficult to prove the identity:  

2

0
( ) (1 ) (1 )

n
i i n i
n

i
i nx C x x nx x



    . 

Now by using our condition: max ii

ix
n n


  , we can know the fact 

that  2 2
inx i   , and then we have the following results: 
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2 2 2

2 2 2 2 2 2
i=0

2
2 2 2 2 2 2

i=0
2 2

2 2 2 2 2 2

2 2 2(1 ) (1 ) ,

2 2( ) (1 ) (1 ) ,
2

2 4 .
2 2

i

n
i i n i i i n i
n n

x x

n
i i n i
n

C x x C x x
n n n

ni nx C x x nx x
n n n

n n
n n n



  
  

  
 
  

 

 



     

      


     

 

  

From these we know that Equation (7.6.5) is true. 

Step 2. We prove that Equation (7.6.4) is also true. Actually, as that 
[0,1]s B  means s  being bounded on [0,1] , we have the fact that  

    0 [0,1] ( )M x s x M     ; 

and since x is a continuous point of ( )s x , we must have the result: for 
any 0  , 0  , such that 

    ' [0,1] ' ( ) ' 2x x x s x s x        . 

Besides by the limitation 
2

2 2

4lim 0
2n

n
n





 , for above  , there exists a 

number N   (   is the set of all natural numbers), such that  

 
2

2 2
4
2 4

nn n N
n M
 



 
     

 
  

Thus, n N  , we have the following result: 
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0 0

0

( ) ( ; ) ( ) (1 ) (1 )

( ) (1 )

( ) (1 ) ( ) (1 )

2 (1 ) (1 ) 2
2 4 2

i i

i i

n ni i n i i i n i
n n i ni i

n i i n i
i ni

i i n i i i n i
i n i n

x x x x

i i n i i i n i
n n

x x x x

s x B s x s x C x x s x C x x

s x s x C x x

s x s x C x x s x s x C x x

M C x x C x x M
M

 

 

   

 
 




 

   

 

   

    

  

     

      

 

 

 

 

This means that lim ( ; ) ( )nn
B s x s x


 .                                                          

Theorem 7.6.2  Let [0,1]s C . For any real number 0  , if a parti-
tion on [0,1]X  , 0 10 1nx x x     , holds the following  
condition:  

max ii

ix
n n


  , 

then n -th ( 1)n   generalized Bernstein polynomial ( ; )nB s x  converges 
uniformly to ( )s x , i.e., 

 0,1
lim ( ) lim max ( ; ) ( ) 0n nn n x

B s s B s x s x
  

    .          (7.6.6) 

Proof.  For any 0  , by knowing that the typical Bernstein polynomial 
( ; )nB s x  can converges uniformly to ( )s x , there must exist a natural 

number 1N  , such that  

  1 ( ; ) ( )
2nn n N B s x s x 


       
 

 . 

 Since ( ) [0,1]s x C , ( )s x  must be uniformly continuous on [0,1] . So
0  , such that, 1 2, [0,1]x x  , we have the following implication: 
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   1 2 1 2 2
x x s x s x      . 

By using our condition: max ii

ix
n n


  , there must exist a 2 1N N , 

such that  

  2 max ii

in n N x
n n

 

 
       

 
 , 

and then  

   {0,1, , }
2i

ii n s x s
n

       
  

 . 

Thus  

 
=0

( ; ) ( ) ( ; ) ( ; ) ( ; ) ( )

(1 ) ,
2 2 2

n n n n

n
i i n i

i n
i

B s x s x B s x B s x B s x s x

is x s C x x
n

   

    

        
 


 

This finishes the proof of lim ( ) 0nn
B s s


  .                                      

Remark 7.6.1  We are able to give a counterexample to show that there 
at least exists a generalized Bernstein polynomial ( ; )nB s x  such that it 
does not converge to ( )s x ;  in  other  words,  for  a  generalized  Bern-
stein  polynomial  ( ; )nB s x ,  there at least exists a continuous function 

[0,1]s C , by making a particular partition on [0,1] as the following: 

0 10 1nx x x     , 

such that ( ; )nB s x  does not converge to ( )s x  in [0,1] .  
As a matter of fact, that we concern with how to choose a particular 

partition on [0,1] , as being 0 10 1nx x x     , is based on such 
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an idea: along with n  increasing, breakpoints ( 0,1, , )ix i n  are 
gradually increasing and adequately moving to right  end-point 1, such 
that ( ; )nB s x  holds that  

  [0,1] lim ( ( ); ) 1
n nB sx x s


   . 

Please see the following example.                                                             

Remark 7.6.2   We now give the proof of the following identity: 

2

0
( ) (1 ) (1 )

n
i i n i
n

i
i nx C x x nx x



     

We can use probability method to do it. In fact, let random variable   
obey binomial distribution ( , )b n x  which its distribution sequence is as 
the follows: 

( ) (1 ) , 0,1, ,i i n i
nP i C x x i n      . 

Thus we get the equation 
0

( ) 1
n

i
P i



   which means the following 

equation: 

0
(1 ) 1

n
i i n i
n

i
C x x 



  . 

It is well-known that the mathematical expectation of the distribution 
sequence is the form as the following: 

0
( ) ( )

n

i
E iP i nx 



   , 

i.e., being as the following equation: 

0
(1 )

n
i i n i
n

i
iC x x nx



  . 
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And then by use of the variance expression of the binomial distribution 
as the following expression:  

 2 2( ) ( ) (1 )D E E nx x      , 

we can get the fact that  2 2(1 ) ( )E nx x E    . In other words, this 

means the following equation: 

2 2 2

0
(1 ) (1 )

n
i i n i
n

i
i C x x nx x n x



    . 

Finally, we have result as the following: 

2

0
( ) (1 )

n
i i n i
n

i
i nx C x x 



   

2

0 0

2 2

0
2 2 2 2

(1 ) 2 (1 )

   (1 )

(1 ) 2 (1 )

n n
i i n i i i n i
n n

i i
n

i i n i
n

i

i C x x nixC x x

n x C x x

nx x n x nx nx n x nx x

 

 





   

 

       

 

  

This is the end of the proof.                                                                       

Example 7.6.1  For 2n  , we should choose a partition on [0,1]  as the 
form: 0 10 1nx x x     , where ( 0,1, , )ix i n   are defined as 
the following: 

,                                           0 [ln ];
ln
[ln ] ln [ln ] [ln ] ,   [ln ] 1 .
ln ln [ln ]

i

i i n
nx
n n n i n n i n
n n n n

          


 

Figure 7.6.1  shows  the distributing cases of the two  partitions on the 
closed interval [0,1]  of ( 0,1, , )ix i n  , when 10n   and 30n  .  
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It is easy to learn such the partitions holding our idea mentioned 
above. Clearly, we have the following limit expression: 

 11

1lim max lim 0
lni in ni n

x x
n  

   . 

For any a given bounded function ( )s x  on [0,1] , it is supposed that 
( )s x  holds the weak Lipschitz condition: 

   0 [0,1] (1) ( ) (1 )L x s s x L x       .             (7.6.7) 

By noticing fact that 
0

lim 1x

x
x


 , we should stipulate that 00 1 . Then 

the generalized Bernstein polynomial as follows: 

 
0

( ; ) (1 )
n

i i n i
n i n

i
B s x s x C x x 



   

must satisfy the bounded condition: ( ;0) (0), ( ;1) (1)n nB s s B s s  .  

When (0,1)x , by denoting that  ˆ max ,1x x x , we have the 

following inequality: 
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0 0

0 0
[ln ]

0

(1) ( ; ) (1) (1 ) (1 )

(1) (1 ) 1 (1 )

1 (1 )
ln

[ln ] ln [ln ] [ln ]   1 (1
ln ln [ln ]

n n
i i n i i i n i

n n i n
i i

n n
i i n i i i n i

i n i n
i i

n
i i n i
n

i

i i
n

s B s x s C x x s x C x x

s s x C x x L x C x x

iL C x x
n

n n n i nL C x
n n n n

 

 

 

 





    

     

     
 
  
    

 

 



[ln ] 1

[ln ]

0 [ln ] 1

[ln ]
ln 1

0 0
[ln ]

0 [ln ] 1

)

ln [ln ]ˆ ˆ (1 )
ln

ˆ ˆ(1 ) ,
ln ln

ln [ln ]ˆ ˆ (1 )
ln

ˆ

n
n i

i n

n n
i i n i i i n i
n n

i i n

n n
n i i i n i n n

n n
i i

n n
i i n i i i n i
n n

i i n

n

x

n nL C x x L C x x
n

L LLx C C x x Lx n
n n

n nL C x x L C x x
n

Lx C



 

 

  

 

 

 

  




  

    


  





 

 

 
[ln ]

ln 1

0 0

ˆ(1 )
ln ln

n n
i i i n i n n
n n

i i

L LC x x Lx n
n n

 

 

      

In above expression, we use two zooming inequalities as follows: 

[ln ] [ln ] [ln ]

0 0 0

ln

ˆ1 (1 ) (1 ) ,
ln

( 1) ( 1) ( 1) ( 1) .
1 2

n n n
i i n i i i n i i n
n n n

i i i

i i n
n

i C x x C x x C x
n

n n n iC n n n i n n
i

 

  

      
 

  
      

  

  
 


 



 The Normal Numbers of Fuzzy Systems and Their Classes  311 
 

 

Fig. 7.6.1.  The non-equidistant partitions on [0,1]  when 10,30n   

 
 

Moreover, we need to verify a limit equation:  

ln 1ˆlim 0n n

n
x n 


 . 

In fact, by using in L’Hospital rule, we have the fact as the following:  

(ln 1) lnlim 0
x

x x
x


 . 

 So we have the limit expression 
(ln 1) lnlim 0

n

n n
n


 . Thus, there 

must exist a natural number N  , such that, n N   , the follow-
ing inequality holds  

ˆ(ln 1) ln lnˆ ˆln ln
2

n n xx x
n


   . 

Then we must have the following inequality: n N  , 

ˆ(ln 1) ln lnˆexp ln exp
2

n n n xn x
n

              
. 
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Thus we get the following result: 

  
 

ln 1 ln 1ˆ ˆ0 lim lim exp ln

ˆ= lim exp ln (ln 1) ln

(ln 1) lnˆ= lim exp ln

ˆlnlim exp 0.
2

n n n n

n n

n

n

n

x n x n

n x n n

n nn x
n

n x

 

 







 

 

     
  

   
 

. 

So ln 1ˆlim 0n n

n
x n 


 , and then we have lim ( ; ) (1)nn

B s x s


 . There-

fore, this kind of generalized Bernstein polynomial ( ; )nB s x  converges 
to (1)s  for any (0,1]x , but not ( )s x .  

By the way, we should point out that there are many bounded func-
tions to hold the weak Lipschitz condition (7.6.7); for example, all the 
functions 1[ , ]s C a b  do hold it, for example, the well-known func-
tions ( )s x x  and ( ) sins x x .                                                          

7.7   Fitted Type Fuzzy Systems 

A group of fuzzy inference rules (see Equation (7.1.2) or (7.4.2) or 
(7.5.6)) plays a very important and basic role in modeling on uncertain 
systems. However, we should use flexibly the group of fuzzy inference 
rules. In this section, we concern with how to design the bounded fuzzy 
sets as the consequents of fuzzy inference rules and how to choose the 
weights for aggregating iR  with respect to every fuzzy inference rule to 
become the whole fuzzy inference relation R , such that the fuzzy system 

s  and the approximate function 1
0

( ) ( )
n

n i i
i

F x A x y


  for ( )s x  have 

the identical equation as follows: 
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1
0

( ) ( ) ( )
n

n i i
i

s x F x A x y


  ,                         (7.7.1) 

but not an approximate equation as being 1( ) ( )ns x F x  (see Equa-
tion (7.4.7)). We are able to finish this intention under dealing little 
with the group of the breakpoints  0,1, ,iy i n   in the output 

universe Y . 
In fact, by noticing that *x  is arbitrary in Equation (7.4.9), Equation 

(7.4.9) can be written as more general form as follows: 

0
( ) ( ) ( )

n

i i i
i

B y w A x B y


 .                             (7.7.2) 

For replacing Equation (7.4.1), we should expand the Zadeh fuzzy sets 
( 0,1, , )iB i n   to be the bounded fuzzy sets as ( 0,1, , )iB i n   

as the following: 

 2
( )( ) , ,
( )d

0,1, , .

 






i
i d

ic

B yB y y Y
B y y

i n

                     (7.7.3) 

And the weights in Equation (7.4.1) are replaced by the following 
form with the integrals: 

0

( )d
, 0,1, , .

( )d


 




d

ic
i n d

ic
i

B y y
w i n

B y y
                     (7.7.4) 

Here the weights ( 0,1, , )iw i n   mean that, for the consequent fuzzy 

sets ( 0,1, , )iB i n   of the fuzzy inference rules, the bigger is the 
area of iB , the bigger portion in the whole iB  occupies. Clearly this is 
reasonable. 
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By Equation (7.4.10) and the normalizing condition:
0

( ) 1
n

i
i

A x


 , we 

surely have the following equation: 

0

0

0

0

0

( ) ( )d( ) d

( )d ( ) ( )d

1( ) ( ) d
( ) d

  
1( ) ( ) d
( )d

( ) d
  ( ) .

( )d











 









 

 


 





nd

i i ic
iY
nd

Y i i ic
i

n d

i idc
i ic

n d

i idc
i ic

d
n ic

i d
i

ic

y w A x B y yB y y y
y

B y y w A x B y y

A x B y y y
B y y

A x B y y
B y y

B y y y
A x

B y y

 

By stipulating that 1 0 1, n ny y y y   , and calculating above definite 
integrals, we have the following result: 

 1 1

( ) d 1 ,
3( )d

0,1, ,

   










d

ic
i i i id

ic

B y y y
y y y y

B y y

i n

                 (7.7.5) 

By denoting 1
0

( ) ( )
n

n i i
i

F x A x y

 , we sum above result up to get a  

theorem as follows. 

Theorem 7.7.1 Following the notations and notions mentioned above, 
based on the group of fuzzy inference rules as Equation (7.4.2) (or 
(7.1.2) or (7.5.6)), the fuzzy system obtained by using CRI method is a  
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fitted function that its basis functions are just the bounded fuzzy sets

( )iA x , i.e., as the following expression: 

1
0

1 1

1 0 1

( ) ( ) ( ) ,

( ) d
,

3( )d

0,1, , ,
, .




 

 

 

   



 












 

n

n i i
i

d

ic i i i
i d

ic

n n

s x F x A x y

B y y y y y yy
B y y

i n
y y y y

                  (7.7.6) 

This sort of fuzzy systems are called Fitted Type Fuzzy System.             

Remark 7.7.1   In Equation (7.7.6), we have known the fact: 

1 1 , 0,1, ,
3

i i i
i

y y yy i n  
   , 

which mean that iy   is the mean valve with 1iy   and 1iy  ; clearly this 
is reasonable and of more accurate value.                                          

Remark 7.7.2  Under supposing the interpolation condition (7.5.3) be 
satisfied, by Equation (7.7.6), we are able to make a bounded linear  
operator 1nL   as follows: 

1 1

1 1
0

: [ , ] [ , ], ( ),

( )( ) ( ) ( )

n n
n

n n i i
i

L C a b C a b s L s

L s x F x A x y

 

 






 







                 (7.7.7) 

Very similar to the proof of Proposition 7.5.1, we are able to get a result 
on the normal numbers of the fitted type fuzzy systems as the following: 

1 [ , ] 0
max ( )

n

n ix a b i
L A x 



  .                                       
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7.8   Hermite Fuzzy Systems and Collocation Factor Fuzzy Systems  

For improving differentiability of the fuzzy systems obtained by us, in 
this section, we take account of a new kind of fuzzy inference struc-
ture and the fuzzy systems generated by them. Now we turn to con-
cern with a sort of single input double outputs open loop uncertain 
systems shown as Figure 7.8.1, where the input universe and the  
output universe are respectively as the following: 

 [ , ] , [ , ] ,X a b Y Y c d c d            

From Figure 7.8.1, we are able to learn that the double outputs varia-
bles y  and y  are not independent, in which first output is that 

( )y s x  and second output is that ( )y s x   generated in essence 
by first output. 
 

 
Fig. 7.8.1.  Single input double outputs open loop uncertain systems 

 
Suppose a group of the input-output data have been got by us by use of 

experiments as being    , , 0,1, ,i i ix y y i n   , where the input  

data set  0,1, ,ix i n   can form a partition on the input universe 

[ , ]X a b    as being 0 1 na x x x b     , and the output 

data set:   , 0,1, ,i iy y i n    is a group of 2 dimensional vectors 

holding the following conditions: 
1) The interpolation condition:  

    d, , 0,1, , ;
d

i

i i i i
x x

ss x y s x y i n
x 
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2) The partition condition:  

0 1 0 1
, ,

n nk k k p p pc y y y d c y y y d                

where ( ), ( ), 0,1, ,i ik i p i i n     , and   and   are two permuta-
tions as the following: 

0 1 0 1

0 1 0 1
,

n n

n n
k k k p p p

 
   

    
   

 
 

 

We take account of how to construct the fuzzy inference rules for the 
uncertain system. Let 

1

1

1 1

0 0

,  0,1, , 1,
,  0,1, , 1,

, ,

i i i

i i i

i i

n n

k k k

p p p

n n

k p
i i

k p

y y y i n

y y y i n

y y
y y

n n





 

 

    

      

 
   

 



  

Firstly, the two groups of  fuzzy sets as the following:  

ˆ, , 0,1, , ,Y Y
i iB B i n      

as the consequents of the fuzzy inference rules as follows: 

 

   

 

2

0

2

0

( )( ) , 0,1, , ,

ˆ , 0,1, , ,

i
i n

i j
j

i
i n

i j
j

B yB y i n y Y
y y

B y
B y i n y Y

y y






   

 

       

  









         (7.8.1) 

where the shapes of the Zadeh’s fuzzy sets as being ( )
ikB Y  are 

shown similarly in Figure 7.4.1, and the structures of the Zadeh’s fuzzy 



318 Fuzzy Systems to Quantum Mechanics 
 

sets as being  
ipB Y   fully resemble the ones of ( )

ikB Y  

(still see Figure 7.4.1).  
And then, we can easily make the two groups of the bounded fuzzy 

sets as ( )iA BF X  and ˆ ( )iA BF X  as the antecedents of the fuzzy 
inference rules as the following: 

 

 

2

0 1
0 1

0 1 0 0 1

2

1
1

1 1

1

1 1

1 2 , , ;( )

0 ,                                       otherwise,

1 2 ,   , ;

( )
1 2

i i
i i

i i i i

i
i i

i i i i

x x x x x x xA x x x x x

x x x x x x x
x x x x

A x x x x x
x x x x




 



 

   
        



   
      

   
   

 

 

2

1

2

1
1

1 1

,   , ;

0 otherwise;
             1,2, , 1,

1 2 ,   , ;( )

0,                              otherwise

i i

n n
n n

n n n n n

x x x

i n

x x x x x x xA x x x x x






 





 

  
 


 

   
        




，　　                

.  

   

   

   

2

1
0 0 1

0 0 1

2

1
1

1

2

1
1

1

, , ;ˆ ( )

0 ,                            otherwise,

,   , ;

ˆ ( )
,   , ;

0 otherwise;

i
i i i

i i

i
i

i i i
i i

x xx x x x xA x x x

x xx x x x x
x x

A x x xx x x x x
x x











  
      


  
     
   

     

 ，              
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2

1
1

1

             1, 2, , 1,

,   , ;ˆ ( )

0,                 otherwise

n
n n n

n n n

i n

x xx x x x xA x x x





 

  
      





.

 

And we write the following four  fuzzy set classes: 

   
   

ˆ ˆ0,1, , , 0,1, , ,

ˆ ˆ0,1, , , 0,1, , .

i i

i i

A i n A i n

B i n B i n

 

 

   

   

 

 
 

It is easy to verify that the elements in ˆ ˆ, , ,     satisfy the  
following conditions: 

1) iA  and ˆ
iA  hold Hermite interpolation condition: 

 

 

d ( ), 0;
d

ˆd ( )ˆ 0, ;
d

, 0,1, , .

j

j

i
i j ij

x x

i
i j ij

x x

A xA x
x

A xA x
x

i j n









 

 

 

 

2) iA   meet the normalizing condition: 
0

( ) 1
n

i
i

A x


  and  

( ) ( ) 0, for 1,

( ) ( ) 0, for 2,
, 0,1, ,

i j

i j

A x A x j i

A x A x j i
i j n

  

  

 
 

By use of ˆ ˆ, , ,    , a group of 2 dimensional vector fuzzy infer-
ence rules is able to be formed as the following: 
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ˆ ˆ, ,

ˆ ˆ{0,1, , } , ,i i i ii n A A B B

 


     


   
               (7.8.2) 

We feel that the vector fuzzy inference may be very interesting. Now we 
first give a brief out-line, and then turn to concern with the problem for 2 
dimensional vector fuzzy inferences as Equation (7.8.2). 
 

 

Fig. 7.8.2.  Uncertain systems with m inputs and m outputs 
 

We take account of the m  dimensional vector fuzzy inference with the 
application back-ground shown as Figure 7.8.2 in which the input is with 
m  variables and the output is with m  variables too (More general case 
with p  inputs and q  outputs has been discussed in [10]).  

Let , , 1,2, ,k kX Y k m   be all nonempty universes in which the  
input variables ( 1,2, )kx k m   and ( 1,2, )ky k m   take their  

values, respectively. Given  fuzzy sets as the following: 

, ,
0,1, , , 1, 2, ,

k kX Y
ki kiA B

i n k m
 

 
 
 

 

they are able to form a group of m dimensional vector fuzzy inference 
rules as follows: 

   1 2 1 2, , , , , , ,
0,1, ,
i i mi i i miA A A B B B

i n




 


               (7.8.3) 

More essential form of Equation (7.8.3) is as follows: 
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1 11 1

1 11 1

1 12 2

1 12 2

1 1

If    is    and    and    is  
then    is    and    and    is  

If    is    and    and    is  
then    is    and    and    is  

 
If    is    and  

m m

m m

m m

m m

n

x A x A
y B y B

x A x A
y B y B

x A

















1 1

  and    is  
then    is    and    and    is  

m mn

n m mn

x A
y B y B











 

           (7.8.4) 

It is well-known that, after the group of fuzzy inference rules as Equation 
(7.8.4) is got, every  fuzzy inference relations iR , on every fuzzy 

inference rule, should be generated by using some  fuzzy implication 
operator  , that is 

    
    

          

1 2 1 2

1 2 1 2

1 1 1 1

, , , , , , , ,

, , , , , , ,

, , , , , ,

0,1, , .

i i i mi i i mi

i m m

i mi m i mi m

R A A A B B B

R x x x y y y

A x A x B y B y

i n










 


 

 

 

 



    (7.8.5) 

First Scheme: Suppose 


 be a mapping from m m m    . We 
denote the following vector symbol: 

      1 2 1 2 1 2, , , , , , , , , ,m m mc c c a a a b b b


     

Then we should concern with how to evaluate ( 0,1, , )kc k m  . At 

first, it is easy to bethink of using some well-known  fuzzy implica-
tion operator 


  to generate a vector  fuzzy implication operator 


 

like Hadamard product, i.e.,  

         1 1 1 1, , , , , , , , ,m m m ma a b b a b a b  


    ,    (7.8.6) 

where   is some chosen  fuzzy implication operator, i.e.,     .  
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When   ,  that  is,   is taken as Larsen implication, Equation 
(7.8.6) becomes the following: 

      1 1 1 1, , , , , , ,m m m ma a b b a b a b   


           (7.8.7) 

Here 


 is called Larsen-Hadamard Vector  fuzzy Implication Oper-
ator. When   , that is, 𝜃 is taken as Mamdani implication, Equation 
(7.8.6) becomes the following: 

      1 1 1 1, , , , , , ,m m m ma a b b a b a b   


           (7.8.8) 

Here 


 is also called Mamdani-Hadamard Vector  fuzzy Implica-
tion Operator.  
Second Scheme: Suppose 


 be a mapping as the following: 

         1 1 1 1

:
, , , , , , , , , ,

m m

m m m ma a b b a a b b



 

 

  


     

 

And then we also concern with how to evaluate. For infecting us by 
Larsen implication operator, we imagine that the product operation in 
Larsen implication operator should be expanded to be some kind of inner 
product operation which is not common inner product operation but a 
kind of Weighted Inner Product Operation as the following:  

    

   

1 1

1 1
1

, , , , ,

, , , , ,

m m

m

m m k k k
k

a a b b

a a b b a b






 


 

   
                      (7.8.9) 

where ( 1,2, , )k k m    are a group of the weights chosen by us that 
should meet the well-known weight condition:  

  

1

{1,2, , } 0 ,

1

k

m

k
k

k m 
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Under first scheme, when   , i.e.,   is taken as Larsen implication 
operator, Equation (7.8.4) can be implemented by the following form: 

    
          

    
        

     

1 2 1 2

1 1 1 1

1 1 1

1 1 1 1

, , , , , , ,

, , , , ,

, , , ,

, , ,

0,1, , ;
, , 1, 2, , .

i m m

i mi m i mi m

i mi m m

i i mi m mi m

ki k k ki k ki k

R x x x y y y

A x A x B y B y

R x y R x y

A x B y A x B y

i n
R x y A x B y k m











 


 






 

 

Distinctly,  fuzzy inference relations ( 0,1, , )iR i n   obtained by 
us above are all the vector forms, and in order to be simple, they are still 
denoted by ( 0,1, , )iR i n   but not by ( 0,1, , )iR i n


 . When 

  , i.e.,   is  taken as Mamdani implication operator, Equation 
(7.8.5) can be implemented by the following form: 

    
          

      
        

1 2 1 2

1 1 1 1

1 1 1 2 2 2

1 1 1 1

, , , , , , ,

, , , , ,

, , , , , ,

, , ,

i m m

i mi m i mi m

i i mi m m

i i mi m mi m

R x x x y y y

A x A x B y B y

R x y R x y R x y

A x B y A x B y





  

 


 





 

where 

     , ,
0,1, , ; 1, 2, , .

ki k k ki k ki kR x y A x B y
i n k m



 


 

 

And then, such   fuzzy inference relations ( 0,1, , )iR i n   should 

be aggregate a whole  fuzzy inference relation R . However, how to 
aggregate R  from ( 0,1, , )iR i n   is a very interesting problem. Here 
we are using the weighted sum to implement the aggregation. For  
doing this, we choose a group of weight vectors as the follows: 
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 1 2, , , , 0,1, , ,i i i miW w w w i n    

that meet the following condition: 

  

 
1

( , ) {1, , } {0, , } 0 ,

{1, , } 1 .

ki

n

ki
i

k i m n w

k m w


   

 
   

 


 


 

By using this group of weight vectors iW , and using Larsen implica-
tion operator (or Mamdani implication operator, but we usually use 
Larsen implication operator), and after noticing the weight vectors 

iW  and iR representing inner product of vectors, we have the follow-
ing result: 

   

 

1 1
0 0

0 1 0 1

1 2

, , , ,

  ,

, , , , ,
1, 2, , , 0,1, , .

n n

i i i mi i mi
i i
n m n m

ki ki ki ki ki
i k i k

i i i mi ki ki ki

R W R w w R R

w R w A B

R R R R R A B
k m i n

 

   

   

 

 

 

 

 

 


 

 

So we have got the following form: 

    

    

      

     

1 2 1 2

1 2 1 2
0

1 1 1 1
0

0 1 0 1

, , , , , , ,

, , , , , , ,

, , , , , ,

, .

m m

n

i i m m
i
n

i mi i mi m m
i
n m n m

ki ki k k ki ki k ki k
i k i k

R x x x y y y

W R x x x y y y

w w R x y R x y

w R x y w A x B y





   

 

 

 





 

 

 

 
     (7.8.10) 
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Now we turn to deal with the 2 dimensional vector fuzzy inference 
rules as Equation (7.8.3) by use of the first scheme. At first, from Equa-
tion (7.8.10), it is easy to know the fact that  

 ˆ ˆ, , 0,1, ,i i i i iR A B A B i n   . 

And from Equation (7.8.10), the whole   fuzzy inference relation 
should formally have the following form: 

         

    

        

1 2 1 2 1 2 1 2
0

1 1 1 1 2 2 2 2
0

1 1 1 2 1 2 2 2 2 2
0

, , , , , ,

, ,

.

n

i i
i

n

i i i i
i
n

i i i i i i
i

R x x y y W R x x y y

w R x y w R x y

w A x B y w A x B y









 

 







 

By noticing the following fact that  

   
     

1 1 2 2

1 1 2 2

ˆ( ), ( ),
ˆ( ), ,

0,1, , ,

i i i i

i i i i

A x A x A x A x

B y B y B y B y
i n

 

 

 
 

especially learning that the input variables  1 2,x x  take values only in 

the diagonal of   , i.e.,  

   1 2 1 2,x x x x        , 

in other words, x1 and x2 being not independent, the whole  fuzzy 
inference relation R  should be with the following form: 

     

  
0

1 2
0

, , , ,

ˆ ˆ( ) ( ) ( )

n

i i
i

n

i i i i i i
i

R x y y W R x y y

w A x B y w A x B y





 

 




              (7.8.11) 
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At present, these weight vectors  1 2,i i iW w w  have not been practi-

cally defined, and then we take them as the following forms: 

1 2

0 0

, , 0,1, , .i i
i in n

i i
j j

y yw w i n
y y

 

 


  
               (7.8.12) 

Clearly they meet the condition: 

   

 
0

{0,1, , } {1,2} 0 ,

{1,2} 1

ki

n

ki
j

i n k w

k w


    

 
   

 




 

Theorem 7.8.1  Reserving the notations and the notions defined above, 
based on the 2 dimensional vector fuzzy inference rules as Equation 
(7.8.2), by means of CRI method, a fuzzy system s  obtained by us is 
approximately equal to a Hermite interpolation function which basis 
functions of it are just the bounded fuzzy sets ( )iA x  and ˆ ( )iA x , i.e., 

 1
0

ˆ( ) ( ) ( ) ( )
n

n i i i i
i

s x F x A x y A x y


  .             (7.8.13) 

Proof.  By CRI method, from the   fuzzy inference relation (see 
Equation (7.8.11)), a  fuzzy transformation “ ” is induced as follows 

       
: , ( ) ,

, ( ) , , , ,

X Y

x X

A B A A R

B y y A x R x y y y y Y Y


 

       

        
    (7.8.14) 

For any a point x X  , we make a  fuzzy set as the following: 
,    ;

( )
,      ,

M x x
A x

m x x






 



  

where the two number M and m  are defined as the following: 
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         sup , , , , [ , ] [ , ] , ,M R x y y x y y a b c d c d       

         inf , , , , [ , ] [ , ] , .m R x y y x y y a b c d c d       

And after x  is substituted into Equation (7.8.14), a fuzzy inference  
result * Y YB     is got as the following: 

     
    

 

     

* *

* * *
1 2

*
1 1

0

*
2 2

0

, ( ) , ,

, , ( ) ,

( ) ( ),

ˆ ˆ .

x X

n

i i i
i

n

i i i
i

B y y A x R x y y

R x y y B y B y

B y w A x B y

B y w A x B y











   

   





  









             (7.8.16) 

Now we take account of the method how to change the binary 
fuzzy set  * ,B y y  into a corresponding point y Y   for Xx  .  

If the following conditions are satisfied 

 

 

 

* *
1 2

* *
1 2

* *
1 2

( ) d , d ,

( ) d , d ,

( )d 0, d 0,

Y Y

Y Y

Y Y

yB y y y B y y

B y y B y y

B y y B y y







     

    

  

 
 
 

 

then we write the following symbols: 

 
 

* *
1 2* *

1 2* *
1 2

( )d d
,

( )d d
Y Y

Y Y

yB y y y B y y
y y

B y y B y y




  

 
 
 

   

And now we are going to use the weighted sum to determine the follow-
ing equations: 
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* *
1 1 2 2

*
1

1 * *
1 2

*
2

2 * *
1 2

,

( )d
,

( )d d

d
.

( )d d

Y

Y Y

Y

Y Y

y y y

B y y

B y y B y y

B y y

B y y B y y

 













 

 

 

 


 


 





 

Then, it is easy to know that 1 20, 0    and 1 2+ =1  .  

Let * *
1 1 2 2y y y    , (which is called Linearly Amalgamated  

Barycenter Method). Thus we have the following result: 

     

     

* *
1 1 2 2

1 2
0 0

1 2
0 0

ˆ ˆ( )d d
.

ˆ ˆ( )d d

n n

i i i i i iY Y
i i

n n

i i i i i iY Y
i i

y y y

y w A x B y y y w A x B y y

w A x B y y w A x B y y

 

 


 

 


 

  

   

  

  

  

   (7.8.16) 

Since x  is arbitrarily chosen in the universe X ,  ,x y   can be 

generalized to be rewritten as ( , )x y , and ( )s x  is replaced by y . By 
noticing the fact as the following:  

 
0

( ) 1
n

i
i

x X A x


    
 
  

and that the define integrals in Equation (7.8.16) are replaced by  
Riemann sums, we have the following form: 

 

 

1 2
0 0

1 2
0 0

ˆ ˆ( ) ( )d ( ) d
( )

ˆ ˆ( ) ( )d ( ) d

n n

i i i i i iY Y
i i

n n

i i i i i iY Y
i i

y w A x B y y y w A x B y y
s x

w A x B y y w A x B y y
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1 2
0 0

1 2
0 0

2 20 0

0 0 0 0
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0 0 1

1 1 1

ˆ( ) ( )
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( ) ( ) ( )

n n

i i i
i i n

n n

A x y A x y
F x

x x x 
  

  


 
   

where we have put  

1 1 1
0

1
0 0

ˆ( ) ( ), ( ) 1 ( ),

ˆ( ) ( ) ( )

n

n i n n
i
n n

n i i i
i i

x A x x x

F x A x y A x y

    



 







 

 


 

Or we have the following form: 
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1 1
0 0

ˆ( ) ( ) ( ) ( ) ( )
n n

n n i i i
i i

x s x F x A x y A x y  
 

             (7.8.17) 

Now we prove that 1lim ( ) 1nn
x 
 , and this only needs to prove 

the following limit expression: 

1lim ( ) 0nn
x 
 . 

For doing this thing, we introduce a new notion for the universe parti-
tions. In fact, we let 

 

1

1

1 0 1 0 0

, 0,1, , 1;
0;
0;

max 0,1, , ,

i i i

n n n n n

n i

h x x i n
h x x x x
h x x x x

d h i n





 

  

   

   



 



 

 

A partition as 0 2 na x x x b      on the universe [ , ]X a b  is 

called Conforming, if it meets the condition: lim 0nn
d


 . 

Actually, the conforming for the partitions on universes is really 
reasonable, so that we assume that the partitions doing by us on  
the input universe X  are always conforming. Now we define the  
following symbol:  

1
2

1

2
i i

i
x xx 



  

and now we take an x X  arbitrarily. Clearly, {0,1, , 1}i n    

such that  1,i ix x x  , and it is easy to know the fact that 

   
 

1
2

1

1 2
0 1

ˆ( ) ( ) 2
n i i i

n i
i i i

x x x x x x
x A x

x x


 


 

  
  


  

By using the elementary inequality as follows:  
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  1
1

, 0, 1, 1, 2, ,
p pp

k k kk
k

a a p a p k p




      

when the variable 1
2

,  i ix x x 
    , the function 1( )n x   has the follow-

ing estimating expression: 

   1
2

3

1 12
1

1 1( ) 2 2 ,
3 8

i
n i i i

i i

hx x x x x x x
x x

   


         
 

 

And when 1
2

1, iix x x 
    , 1( )n x   is of the following estimating  

expression: 

   1
2

3

1 12
1

1 1( ) 2 2 ,
3 8

i
n i i i

i i

hx x x x x x x
x x

   


          
 

 

From above reasoning and the partition on X  being conforming, we 
have the following result: 

  1( ) 0
8 8

ni n
n

h dx X x 


      
 

 

This means that 1( ) 0n
n x 
   or 1( ) 1n

n x 
  . Therefore, 

Equation (7.8.17) should become the following equation:  

1
0 0

ˆ( ) ( ) ( ) ( )
n n

n i i i
i i

s x F x A x y A x y
 

    .              (7.8.18) 

It is well-known that 1
0 0

ˆ( ) ( ) ( )
n n

n i i i
i i

F x A x y A x y
 

    is just a  

Hermite interpolation function, where not only 1( )nF x  converges uni-

formly to ( )s x  but also 1d ( )
d
nF x

x
  converges uniformly to 

d ( )
d
s x

x
. 

Here such s  is called a Hermite Fuzzy System.                                    
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Remark 7.8.1  Reviewing Equation (7.8.17) as the follows: 

1 1
0 0

ˆ( ) ( ) ( ) ( ) ( )
n n

n n i i i
i i

x s x F x A x y A x y  
 

    , 

which makes us to discover a phenomenon: for a fuzzy system s , alt-
hough its input-output function ( )s x  is often not approximately equal to 
a typical interpolation function, as if the integrating factor method in 
differential equations, there may exists a non-zero function 1( )n x 

such that 1( ) ( )n x s x   is just approximately equal to a typical interpo-
lation function. The fuzzy system s  is called a Collocation Factor 
Fuzzy System. Under this significance, Hermite fuzzy systems are a 
kind of particular collocation factor fuzzy systems.                            

Remark 7.8.2  Now we rewrite the typical triangle wave Zadeh fuzzy 
sets (Their shapes are very like the ones in Figure 7.4.1) in Example 
7.4.2 to be  0,1, ,iA i n  as the following: 

     

     
     

     

0 1 0 1
0

1 1 1

1 1 1

1 1 1

,   , ;
( )

0 otherwise;

,   , ;

( ) ,   , ;
0 otherwise;

1, 2, , 1,
,   , ;

( )
0 ot

i

i i i i i

i i i i i i

n n n n n
n

x x x x x x x
A x

x x x x x x x

A x x x x x x x x

i n

x x x x x x x
A x

  

  

  

    

   


   



 

  




，　　        

，　　          

，　　          herwise




 

Then the bounded fuzzy sets as the antecedents of fuzzy inference 
rules, ( )iA x ( 0,1, , )i n    and  ( )iA x ( 0,1, , )i n  ,  are all  assem-
bled  by  using as the following: 
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2 3

2
0 0 1 0

2
0 0 0

2 2
1 1 1

2 2
1

( ) 3 ( ) 2 ( ) , [ , ],

0,1, , ;

ˆ ( ) ( ) ( )

         1 ( ) ( ) , [ , ]

( ) ( ) ( ) 1 ( ) , , ;ˆ ( )
( ) ( ) 1 ( ) ( ) ,       , ;

i i i

i i i i i i i
i

i i i i i i i

A x A x A x x a b

i n

A x h A x A x

h A x A x x a b

h A x A x h A x A x x a x
A x

h A x A x h A x A x x x b

i

  



   





  

    
   



 
  

2
1 1

2
1

1,2 , 1;
ˆ ( ) ( ) ( )

         ( ) 1 ( ) , [ , ]

n n n n

n n n

n

A x h A x A x

h A x A x x a b

 












  

  

   



 

This means, in many cases, the triangle wave Zadeh’s fuzzy sets are 
the kernels of bounded fuzzy sets, in which the kernels play roles in 
generating these bounded fuzzy sets.                                                      

7.9   Normal Numbers of Hermite Fuzzy Systems 

It is the time to calculate the normal numbers of Hermite fuzzy systems.  
At  first, the norm in  1

1[ , ],  
C

C a b   is defined as the following: 

 1 max ( ) , ( ) [ , ]
C

s s x s x x a b   

Secondly, we define a bounded linear operator from  1
1[ , ],  

C
C a b   to 

the function space  1[ , ],  C a b   as follows: 

    

1 1
1 1

1
0

: [ , ] [ , ], ( ),

ˆ( )( ) ( ) ( )

n n
n

n i i i i
i

L C a b C a b s L s

L s x A x s x A x s x

 






 







            (7.9.1) 
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where 

    d ( ), , 0,1, ,
d

i

i i i i
x x

s xs x y s x y i n
x 

      . 

Theorem 7.9.1  We still denote  max 0,1, ,n id h i n  ,  then the 

normal numbers of Hermite fuzzy systems are as the following: 

1 1
4

n
n

dL    .                                    (7.9.2) 

Proof.   Firstly from the following condition which we always use:  

 
0

( ) 0, ( ) 1
n

i i
i

x X A x A x


 
    

 
 , 

we have the following inequalities: 

   

 1 1

1 1[ , ] [ , ] 0

[ , ] [ , ]0 0

ˆ( ) max ( )( ) max ( ) ( )

ˆ ˆmax ( ) ( ) 1 max ( ) .

n

n n i i i ix a b x a b i

n n

i i iC Cx a b x a bi i

L s L s x A x s x A x s x

s A x A x s A x

   


  

  

     
 



 
 

By the structures of the bounded fuzzy set ˆ
iA ( 0,1, , )i n  , for arbi-

trarily given a point x X , there must exist a {0,1, , 1}i n  , such 
that  1,i ix x x  . Thus we have the following inequality: 

  1
1

0 1
2

1

1

ˆ ˆ ˆ( ) ( ) ( )

2 ,
4 4

n
i i

k i i
k i i

i i

i n

i i

x x x x
A x A x A x

x x

x x x x
h d

x x




 





 
  



   
 
   




 

So we get that the following one side inequality: 
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1
1 1

1
sup ( ) 1

4C

n
n n

s

dL L s  


   . 

On the other hand, for arbitrarily given (0,0.1]  , we construct a func-
tion ( )s x  as follows  

 

 

 

0 0

1
0 2

0 0

1
0 2

0 0

2

14

1 1

exp (1 ) ,         , ;

1 (1 9 )

( ) ,      , ;    

(4 20 )

exp (1 ) , , ;

i i

i

n

i i

i

n

i i

x x x a x

x x

d
s x x x x

x x

d

x x x x b

 





 







 

         
              

  
        


          

  

where we have put the following two symbols: 

 0 min {0,1, , 1} ,i ni i n h d     

0 0
1

0 2

1 .
2

i i
i

x x
x 




  

We now prove that 1[ , ]s C a b . In fact, we firstly calculate the  
following two one-sided limits: 

 

10 0 2

0

10 0 2

0

2

0

4

lim ( ) 1 (1 9 )

                   (4 20 )

1 9 4 20               1 1 ,
4 16

i

i i

x x
n

i i

n

i

x x
s x

d

x x

d

s x
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10 0 2

10

10 0 2

0

2
1

0

4
1

1

lim ( ) 1 (1 9 )

                    (4 20 )

1 9 4 20                 1 1 ,
4 16

i

i i

x x
n

i i

n

i

x x
s x

d

x x

d

s x





  



 

 

 



 
     

 

 
    

 
 

     





 

So we know that ( )s x  is continuous in [ , ]a b . And then, by noticing the 
following expressions: 

  

 

  

0 0

1
0 2

0 0
1

0 2

0 0

3 1

1 1

(1 )exp (1 ) ,          , ;

(2 18 )

( ) ,             , ;

(16 80 )

(1 )exp (1 ) ,   , ;

i i

i

n

i i
i

n

i i

x x x a x

x x

d
s x x x x

x x

d

x x x x b

 





 






 

       
  
  
    

       
  

          

  

And the calculating the following two one-sided limits: 

1 10 00 02 2

0

0

1 10 00 02 2

10

3

0

0

3
1 1

0

lim ( ) (2 18 ) (16 80 )

1 1(2 18 ) (16 80 ) 1 lim ( ),
2 8

lim ( ) (2 18 ) (16 80 )

(2 1

i

i

i

i ii i

x x
n n

x x

i ii i

x x
n n

x x x x
s x

d d

s x

x x x x
s x
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10 0

1 18 ) (16 80 ) 1 lim ( ),
2 8 ix x

s x  
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we also know that ( )s x  is continuous in [ , ]a b ; so 1[ , ]s C a b . At last, 
from the expressions of ( )s x  and ( )s x  in [ , ]a b , it is easy to know the 
following results: 

 
    

 
    

0

0 0

0

0

1 10 0

0

(1 ) (1 )

1

(1 ) (1 )
1

max ( ) , ( ) ,

max , (1 ) ,

1 ,

max ( ) , ( ) ,

max , (1 ) ,

1 ,

i i

i i

i

x x x x
i

i

x x x x
i

s x s x x a x

e e x a x

s x s x x x b

e e x x b

 

 

 



 



 

   



     


    

     

 

   

     

 

 

And when  0 0 1,i ix x x  , it is also easy to know the following  

equations: 

1 1
0 02 2

1 1
0 02 2

2 4

3

( ) 1 (1 9 ) (4 20 ) ,

( ) (2 18 ) (16 80 ) ,

i i

n n

i i

n n

x x x x
s x

d d

x x x x
s x

d d

 

 

 

 

    
          

   

  
       

 

 

Thus   0 0 1max ( ) , ( ) , 1i is x s x x x x    . Based on above three 

cases, we have that 1 1
C

s  . 

And then by noticing the following fact that  

     
 

0 0 0

0

1

1

1 ,

1

i i i

i

s x s x s x

s x
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we have get the following inequality: 

 

    

       
       

        

1

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1
1

1 1 0[ , ]

0 0

1 0 1 1 0 1

0 0 1 0 1 0

sup ( )

max ( )

ˆ

ˆ   

ˆ ˆ(1 )

(1 ) 1 ,
4

C

n n n
s

n nx a b

i i i i

i i i i

i i i i

n

L L s L s

L s x L s x

A x s x A x s x

A x s x A x s x

A x A x A x A x

d





   

 

   

 

 

 

 

 

    

    
 



 

 

 
 

Because   is arbitrary, it must be true that 1 1
4

n
n

dL    . There-

fore, we have got our result:  

1 1
4

n
n

dL    .                                            

 
We easily know that, when the partition on the universe X  is con-

forming, the sequence of numbers 0n
nd  ; so nd  is bounded. 

Thus Hermite fuzzy systems are not the singular fuzzy systems, but the 
regular fuzzy systems. Although Hermite fuzzy systems are not the nor-
mal fuzzy systems, their limit systems are just the normal fuzzy systems, 
which is very like the effect for central limit theorem in probability theo-
ry; that is very interesting. 

7.10   Weighted Fuzzy Sets 

In this section, we further take account of the significance of  fuzzy 
sets and bounded fuzzy sets. This needs a more extensive formwork to 
deal with them. So we introduce a new concept of weighed fuzzy sets. 
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Definition 7.10.1  Given a nonempty universe X , a quaternary form as 
the following: 

 , , ,X A W W A  

is called a weighed fuzzy set, where ( ), , XA X W W A   ; and 
AW   means an action of W  to A , and W  is called the weight func-

tion of the weighed fuzzy set.                                                                    

In order to understand weighed fuzzy sets, we first review intuition-
istic fuzzy sets (see [2]). Given a nonempty universe X , an intuitionistic 
fuzzy set A  defined on X  is denoted by a ternary form as follows: 

 , ,A AA X   , 

where : [0,1],A X   and : [0,1]A X  , which satisfy the following 
condition: 

  ( ) ( ) 1A Ax X x x     , 

and where ( )A x  means the degree of x  belonging to A  and ( )A x  
means the degree of x  not belonging to A . 

Example 7.10.1  Given an intuitionistic fuzzy set  , ,A AA X    on 

X , take fuzzy sets , ( )A W X , which their membership functions 
are respectively defined as the following: 

( ) ( ), ( ) ( )A AA x x W x x   . 

The action of W  to A , W A , is defined by the following mapping: 

 
:

( ) 1 ( ) ( )

W A X

x W A x A x W x



 

 

  
 

Thus it is easy to know that the quaternary  , , ,X A W W A  is just a 

weighed fuzzy set.                                                                                      
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On the contrary, we can chose two fuzzy set , ( )B W X , such  
that W  and B , and the action of W  to B , W B , should satisfy the 
following condition: 

:
( )( ) 1 ( ) ( )

W B X
x W B x B x W x



 

 
  

 

Such quaternary ( , , , )X B W W B  is of course a weighed fuzzy set. 
However, if   ( )( ) 0x X W B x   , then we should take  

( ) ( ), ( ) ( )A Ax B x x W x   . 

So the ternary form  , ,A AA X    is just an intuitionistic fuzzy set.    

Example 7.10.2   Suppose [ , ]X a b   , where a b  and  

1 2 1 2, ( , ),x x a b x x  . 

We take a fuzzy ( )A X  to be the following saw tooth wave fuzzy 
set (see Figure 7.10.1): 

     
 

1 2 1 1 2

1 2

,  , ;
( )

0,                 , ,
x x x x x x x

A x
x x x

     
 

 
 

 
Fig. 7.10.1  Saw tooth wave fuzzy set 
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And we define a weight function as the following: 

   1 2 1( ) ,W x x x x x x X   ; 

The action of W  to A  is de fined as the following: 

2

2

( ) ( ), ;
( )( )

( ) ( ), .
A x W x x x

W A x
A x W x x x

 
   


 

Clearly ( , , , )X A W W A  is a weighed fuzzy set. It is easy to learn that 
W A  is a bounded fuzzy set (see Figure 7.10.2).                                
  
 
 

 
 

Fig. 7.10.2.  A kind of weighed fuzzy sets 
 
 
Example 7.10.3  Given a fuzzy set ( )A X , we define a weight 
function as the following: 

: , ( )W X x W x c     

where c  is a constant. And an action of W  to A , W A , is  
defined as the following:  
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  ( )( ) ( )x X W A x c A x     

Clearly W A  is a bounded fuzzy set on X , i.e., ( )W A BF X . 
This kind of bounded fuzzy sets are of commonly use. Besides, we will 
learn that they can reveal the practical meanings between  fuzzy sets 
and bounded fuzzy sets.                                                                             

Proposition 7.10.1  Given a nonempty universe X , any a bounded 
fuzzy set on X  is always becoming a weight function of a weighed 
fuzzy set on X . 

Proof.  For any a bounded fuzzy set : [ , ]B X c d , we can prove our 
result by the following three cases.  

Case 1. 0d  . We arbitrarily take a fuzzy set ( )A X , and let 
( ) ( )W x B x , and an action of W  to A , W A , is defined as the  

following: 

  ( )( ) ( ) ( ) ( )x X W A x A x B x B x     . 

It is not difficult to verify that ( , , , )X A W W A  is surely a weighed 
fuzzy set, where B  is just the weight function of the bounded fuzzy set. 

Case 2. 1c  . We also arbitrarily take a fuzzy set ( )A X , and 
we still let ( ) ( )W x B x , and an action of W  to A , W A , is defined 
as the following: 

  ( )( ) ( ) ( ) ( )x X W A x A x B x B x     , 

Thus ( , , , )X A W W A  is surely a weighed fuzzy set, where B  is also 
just the weight function of the bounded fuzzy set. 

Case 3. We should the situation of [ , ] [0,1]c d   . Now we write 
the following symbols: 

 
 

1 1
1 2

1
3

([0,1]), [ , ] ( ,0) ,

[ , ] (1, )

X B X B c d

X B c d
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Then we define a fuzzy set ( )A X  as the form:  

  1
( ) ( )Xx X A x x   . 

And take ( ) ( )W x B x , and an action of W  to A , W A , is defined 
as the following: 

1

2

3

( ) ( ), ;
( )( ) ( ) ( ), ;

( ) ( ), .

A x B x x X
W A x A x B x x X

A x B x x X

 
  
  

  

It is clear to know that ( )( ) ( )W A x B x .  
So we can know that ( , , , )X A W W A  is also a weighed fuzzy set, 

where B  is surely a the weight function of the weighed fuzzy set.          

Remark 7.10.1  For any a bounded fuzzy set ( )A X , we also make 
a weighed fuzzy set  , , ,X A W W A  by this A , such that the A  

cannot weight be a function in the  , , ,X A W W A . Please see the fol-

lowing example.                                                                                         

Example 7.10.4  Zadeh’s fuzzy set is a bounded fuzzy set, and then it is 
also a weight function of some weighed fuzzy set; but the action of 
weight function to fuzzy set A  is not unique.  

As a matter of fact, given a nonempty universe X , we arbitrarily take 
a Zadeh’s fuzzy set ( )A X  and let ( ) 1W x  ; now we define an 
action of W  to A ,W A , as the following: 

  ( )( ) ( ) ( ) 1 ( )x X W A x W x A x A x         . 

Thus  , , ,X A W W A  degrades into a Zadeh’s fuzzy set. Here we 

should notice that the bounded fuzzy set A  is not the weight function of 
the weighed fuzzy set ( , , , )X A W W A .                                               
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Now we want to discuss the effect of weight function ( )W x  in 
weighed fuzzy set  , , ,X A W W A  by means of Example 7.10.4. In 

fact, when  1 2,x x x ,    1 2 1( )A x x x x x   ; as long as x  moves 

from 1x  to 2x , ( )A x  goes up along the segment:    1 2 1x x x x  . 

Under some cases, this kind of ascending situation will continue after 
2x x . So there should be a kind of weight to realize the  mechanism. 

When x  reversely moves from 2x  to 1x , ( )A x  will appear declining 
situation; then after 1x x , it is the same way that ( )A x  will decline. 

Generally, given a function :f X   , so-called a weight action to 
the function f  means that there exists a weight function :W X   , 
such that we can get a weighed function : ,F X    by means of W , 
as the following: 

: , ( ) ( ) ( )F X x F x W x f x     

where the action of W  to f  is actually multiplication operation, i.e., 
W f W f  . Clearly, this multiplication action can be generalized.   

For example, we can use   operation or   operation, and even we 
can partly use  , , or multiplication, etc. In fact, in example 7.10.4, we 
actually partly use  , , to realize the weight action of W  to A . 

7.11   Conclusions 

Under the significance of  fuzzy sets the constructions of fuzzy sys-
tems are researched and their approximation properties are discussed, 
in details. Our main results are as follows. 

1)  Based on a very extensive class of  fuzzy sets, by means of 
CRI method, such fuzzy systems are constructed that the connection 
between the input and the output are just the quasi-interpolations. 

2)  By becomingly choosing  fuzzy sets as the fuzzy inference 
antecedents, the piecewise linear fuzzy systems and Lagrange fuzzy 
systems are formed respectively. 
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3)  Based on a very particular class of  fuzzy sets, by means of 
CRI method, such fuzzy systems are constructed that the connection 
between the input and the output are just the generalized Bernstein 
polynomials. 

4)  Under a weaker condition, it is proved that the generalized 
Bernstein polynomials are uniformly convergent in [ , ]C a b , and a 
counterexample is given to show that there exist the generalized  
Bernstein polynomials with being not convergent in [ , ]C a b . 

5)  The normal numbers of fuzzy systems are defined so that they 
are regarded as the center invariants of fuzzy systems which can quan-
titatively describe fuzzy systems. Based on them, three classes of 
fuzzy systems are defined such as the normal fuzzy systems, the regu-
lar fuzzy systems and the singular fuzzy systems. On such signifi-
cance, Lagrange fuzzy systems are the singular fuzzy systems, and 
Bernstein fuzzy systems are the normal fuzzy systems. 

6)  By becomingly choosing  fuzzy sets as the fuzzy inference 
consequents, a class of fitted type fuzzy systems are constructed, 
and although they do not meet the interpolation condition, they are 
able to accurately approximate fuzzy systems.  

7)  Under supposing universe partitions be compatible, based on a 
class of  fuzzy sets, by using CRI method, such fuzzy systems are 
constructed that the connection between the input and the output are 
just Hermite fuzzy systems and it is shown that Hermite fuzzy systems 
are the regular fuzzy systems. 

8)  Based on the process of forming Hermite fuzzy systems, the 
collocation factor fuzzy systems are defined, which not only improve 
flexibility of modeling on uncertain systems, but also expand appli-
cation area for fuzzy systems. 

9)  When researching Hermite fuzzy systems, we find that, alt-
hough they are not the normal fuzzy systems, their limit systems are 
just the normal fuzzy systems, which is very like the effect for the cen-
tral limit theorem in probability theory. 

10)  It should be to say it is us who use functional analysis to de-
scribe fuzzy systems quantitatively, so that we are more profoundly 
able to reveal the inner mechanism of fuzzy systems. In fact, in  
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substance, a class of fuzzy systems is just a bounded linear operator 
from a Banach space to a normed linear space; it is based on such 
bounded linear operators that almost all fuzzy systems are classed as 
three classes of types such as the normal fuzzy systems, the regular 
fuzzy systems and the singular fuzzy systems. It is more important 
that, based on well-know the Resonance Theorem (or the Uniform 
Boundedness Principle), we are able to expediently verify the conver-
gence of the universal approximation for fuzzy systems. We should 
know that, a fuzzy system with bad universal approximation is hardly 
useful. Thus, whether a bounded linear operator regarded as a fuzzy 
system is uniformly bounded looks very important. 
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Chapter 8  

Unified Theory of Classic Mechanics 
and Quantum Mechanics 

8.1   Introduction 

As we all know, classic mechanics is the scope of macroscopical physics 
in which Newtonian mechanics is its main part. Classic mechanics is 
very different with microphysics, especially with quantum mechanics. 
For example, the motions of microscopic particles have wave-particle 
duality; but the motion of mass points in macroscopical physics only has 
mass point characters and no wave natures; in other words, there is no 
wave-mass-point duality in macroscopical physics. However, there exists 
a correspondence principle: considering a kind of motion state in quan-
tum physics, when quantum number n  , the limit situation of the 
motion state in quantum physics must become a kind of motion state in 
macroscopical physics. In other words, the limit situation of the motion 
low in quantum physics is just some motion low in macroscopical  
physics. 

Generally, Bohr suggested a generalized correspondence principle: 
the limit situation of any new theory must be in line with some old  
theory.  

It is worth noting that above correspondence principle or generalized 
correspondence principle is all of unipolarity: the limit situation of the 
motion low in quantum physics is just some motion low in macroscopi-
cal physics, but the converse principle is clearly meaningless.  

However, we can consider an important problem: must any one of  
motion states in macroscopical physics be the limit situation of some the 
motion states in quantum physics? 
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Apparently, this problem has not been observed, and of course there is 
no any answer. For example, we consider the well-known projectile  
motion. As we all know, a projectile motion can be used by the equation 
of locus of the projectile motion as following: 

 

2
2 2
0

2
0

0 0

( ) tan ,
2 cos

20, , sin 2

gy x x x
v

vx d d
g






 

 
 

where 0,
2
   

 
 is a mass ejection angle, 0 (0, )d    is the maxi-

mum range of fire, and 0 (0, )v    is the initial velocity; here the air 
friction is omitted.  

Clearly  0( ) 0,y x C d , i.e., a projectile motion can be described by 
an unary continuous function. For this continuous function, can we find 
some microscopic particles such that the limit of the group behavior of 
these microscopic particles is just this continuous function ( )y x  when 
quantum number n  ?  

In this chapter, we will give a positive answer for this problem. It is 
easy to understand that almost all laws of classic mechanics are de-
scribed by continuous functions. So we can generalize above problem as 
such problem: for any a continuous function f , unary continuous func-
tion or multivariate continuous function, which should describe some 
motion law of some mass point in microscopically physics, can we find 
some microscopic particles such that the limit of the group behavior of 
these microscopic particles is just this continuous function f  when 
quantum number n  ?  

From the following section, we start to try to solve out the problem. 

8.2   Quantum Mechanics Representation of Classic Mechanics 

Firstly, we consider the case of unary continuous functions. For any an 
unary continuous function ( ) [ , ]f x C a b , we can use a linear transfor-
mation as the following: 
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:[ , ] [0,1],

( )

u a b
x ax u u x
b a




 



 

to redefine the continuous function ( )f x  on the closed interval [0,1] , 
denoted by ( )g u , i.e., 

 ( ) ( ) [0,1]g u f b a u a C    . 

Therefore, without loss of generality, we can only consider such continu-
ous functions as being ( ) [0,1]f x C . However, we do not consider 
constant functions because constant functions are almost meaningless in 
physics. 

In order to prover the following main theorem, we have to a lemma as 
the following. 

Lemma 8.2.1 Arbitrarily taken 1m   real numbers 0 1, , , ma a a   , 
we denote the following symbol: 

 1max 1,2, ,m i ie a a i m    . 

And we take a permutation as the following: 

0 1

0 1

m

m
k k k


 

  
 




, 

such that 
0 1 mk k ka a a   . If we write  

 1
max 1,2, ,

i im k kd a a i m


    , 

then n nd e . 

Proof.  By the definition of nd , we can know the following fact: 

   1
{1,2, , }

i im k ki m d a a


    . 

If 0md  , then the conclusion of the lemma is clearly true. Now we  
assume 0md  . We know that   is a bijection, and then 1i ik k  .  
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Let 1,i is k t k   . So s t ma a d  . We consider two cases: (i) and 
(ii) as follows. 

(i) s t . If we pay attention to the total order relation: 

0 1 1i i mk k k k ka a a a a


       , 

then we can learn the fact: 

   11 2 1, , , , , , ,
i is s s t t t s k ka a a a a a a a a
     , 

which means    1 2 1, , , , , , ,s s s t t t sa a a a a a a       . Let 

  min { , 1, , } ,i tl i s s t a a     . 

Clearly l s ; or else  ,l s sa a a   ; this will be contradictory with 

the fact that  ,l ta a  . By the meaning of the subscript l , it is easy 

understand that  1 ,l sa a   . Thus we have the result: 

1m l l s t me a a a a d     . 

(ii) t s . This time we have the following result: 

   11 2 1, , , , , , ,
i it t t s s t s k ka a a a a a a a a
     , 

which means the following expression is true: 

   1 2 1, , , , , , ,t t t s s t sa a a a a a a       . 

Let   max { , 1, , } ,i tl i t t s a a     . Clearly l s , or else we 

have  ,l s sa a a   ; this will also be contradictory with this expres-

sion  ,l ta a  . So  1 ,l sa a   . Thus we have the result: 

1m l l s t me a a a a d     . 
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We complete the proof of the proposition.                                                 

Theorem 8.2.1 Given arbitrarily a non-constant function ( ) [0,1]f x C , 
there must exist some microscopic particles such that the limit of the 
group behavior of these microscopic particles is just this continuous 
function ( )f x  when the quantum number n  . 

Proof.  Step 1. We consider the wave function of a microscopic particle 
in infinite deep square potential well. 

As a matter of fact, we take a particle M  with quality m , and M  
moves along Ox  axis and is of determined momentum xp mv  and 

determined energy 
2

21
2 2x

pE mv
m

   where xv  is the velocity of M  

moving along Ox . We take a special infinite deep square potential well 
as follows (see Figure 8.2.1): 

0,       [0,1],
( )

, ( ,0) (1, )
x

V x
x


     
 

The particle M  is complete free inside the potential well; only at two 
endpoints 0, 1x x  , there are infinite forces to impose restrictions  
on M  not to escape. 

 
Fig. 8.2.1. Particle movement in the infinite deep square potential well 

 
 
At outside of the potential well, i.e. ( ,0) (1, )x   , we now 

notice the steady state Schrodinger Equation as the following: 
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2 2

2 ( ) ( ) ( )
2

V x x E x
m x

 
 
    


 

It is easy to know that ( ) 0x  ; so the probability of finding the  
particle in the interval ( ,0) (1, )   is zero. However inside the 
potential well, i.e. [0,1]x , we have ( ) 0V x  ; then the Schrodinger 
Equation turn into the following form: 

22

2
( ) 2 ( )d x mE x

dx
 

 
  

 
. 

Let 
2mEk 


; then we have the following form: 

2
2

2
( ) ( ) 0d x k x

dx
   , 

which is the equation of motion of a simple harmonic oscillation, and its 
general solution is as following:  

( ) sin cosx A kx B kx   , 

where ,A B  are two arbitrary constants that can be determined by some 
boundary conditions.  

Then, what are the boundary conditions? In fact, in quantum mechan-
ics, the solution of a Schrodinger Equation in three-dimension space, i.e. 
the wave function ( , , , )x y z t  should satisfy the following established 
standard conditions:   

i) 
3

2 1dxdydz  ; 

ii)   and its three partial derivatives , ,
x y z

  
  

 are continuous 

everywhere; 
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iii)  is a single-valued function about coordinates. 
By means of above conditions, when the potential function approaches 

infinite, based on the continuity of ( )x , we can get the result as  
being (0) (1) 0   , which can make the solution be continuous at 
both inside and outside of the potential well. Because of the following 
expression: 

0 (0) sin 0 cos 0A k B k B    , 

we get 0B  ; thus we have the following equation: 

( ) sinx A kx   

And then we take notice of the equation: 0 (1) sinA k  , if 0A  , 
then ( ) 0x   which is a trivial solution and cannot be normalized. 
Thus we only get the result: sin 0k  , and we know the following fact: 

0, , 2 , 3 ,k         

Clearly that 0k   is meaningless, for this can also make that ( ) 0x  . 
Besides, k  with negative values cannot generate any new solutions  
because of the fact that sin( ) sin     and we can make the minus 
signs enter into the coefficient A . Therefore, we have the result: 

, 1, 2,3,nk k n n    

We should notice a fact that, the boundary condition at 1x   is not used 
to determine the coefficient A , but to determine the energy E  because 

of the expression:
2mEk 


, i.e., 

2 2 2 2 2

, 1,2,3,
2 2

n
n

k nE E n
m m


   

                    (8.2.1) 

It is well-known that 
2 2

1 2
E

m





 is ground state, and others are follows: 
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2 1 3 1 4 14 , 9 , 16 ,E E E E E E     

which means that the energy of a particle can only take discrete values; 
in other words, the energy of a particle is quantized. And positive integer 
n  is called the quantum number of the energy of a particle. So we can 
learn that the quantization of the energy of a particle is very natural in 
quantum mechanics. 

Thus the solution of the Schrodinger Equation can be expressed by the 
quantum number as the following: 

( ) sin( ), 1,2,3,n x A n x n                       (8.2.2) 

In order to determine the coefficient A , we can use the normalization 

condition 
1 2

0
( ) 1n x dx   to get 2A  . Then we get the solution of 

the Schrodinger Equation inside the potential well as the following: 

( ) 2 sin( ), [0,1], 1,2,3,n x n x x n                (8.2.3) 

Let  

( ) sin( ), [0,1], 1,2,3,n x n x x n     , 

and we have the following form: 

( ) 2 ( ), [0,1], 1,2,3,n nx x x n                  (8.2.4) 

The function ( )n x  is called essence wave function of the wave func-
tion ( )n x .   

Step 2. Based on an important fact that will be described as follows, 
we should consider to weaken three standard conditions about the wave 
function ( , , , )x y z t  mentioned above.  

As a matter of fact, we can see that the derived function 
( )n x
x




 of 

the wave function ( ) 2 sin( )n x n x   is not continuous at 0,1x  . 
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For this we only notice the following implication is true: 

( ) 2 cos( )

(0) (1)2 20, cos( ) 0 .

n

n n

x n x
x n

n
x n x n

 


  
 


 


  

       

 

It is well known that the movement of a particle in the infinite potential 
well is a typical example in quantum mechanics. However, as we have 
learned above, its wave function   and its three partial derivatives 

, ,
x y z

  
  

 are not continuous as everywhere (of course, in above 

case, there is only one partial derivative ,
x




 in fact 
d=
dx x

 


 here).      

We should forget a fact that wave function   does not represent a 
physical wave but only a mathematical wave; in other words, 2  is a 

probability density function where it should be normalized.   
We also know such a fact that, in probability theory, any probability 

density function is not required to be continuous at everywhere but only 
required to be almost everywhere continuous. Thus, we have enough rea-
son to revise the three standard conditions which the wave function 

( , , , )x y z t  should satisfy mentioned above to be as the following: 

(i) 
3

2 1dxdydz  ; 

(ii)   and its three partial derivatives , ,
x y z

  
  

 cannot be not 

continuous only at finite points (clearly the requirement is a little  
stronger than almost everywhere continuous); 

(iii)   is a single-valued function about coordinates. 
Moreover, by the viewpoint of Von Neumann, wave function   is  
defined in a Hilbert space  2 3 , where the operations in quantum 

mechanics (momentum, work, and so on) are inner product operations, 
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which may be enlightened by 
3

2 1dxdydz   and form a mathemati-

cal formalization structure. We all know the fact that, in a Hilbert space 
 2 3 , we have no need to require wave function   to be continuous 

at everywhere but almost everywhere continuous to be enough. 

Step 3. We continue to consider the wave function of the particle in 
the one dimension infinite deep potential well. We have known its  
general solution being as  

( ) sin cosx A kx B kx   , 

where ,A B  are arbitrary constants which can be determined by  

the boundary conditions. This time, we suppose 
( )x
x




 be continuous 

at the boundary points 0,1x  . We take notice of the following  
implication: 

( ) (0)cos sin 0 0x A B Akx kx A
x k k x k

  
      

 
 

Then we get the following result: 

( ) cosx B kx  . 

And then we pay attention to the equation 
( ) sinx B kx
x k


 


, so that  

(1)0 sinB k
x k


  


. 

Because 0B
k
 , we solve out the values of k  as follows: 

, 1,2,3,nk k n n     

Very similar to the method in Step 1, we have the expression of E  again 
as follows: 
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2 2 2 2 2

, 1,2,3,
2 2

n
n

k nE E n
m m


   

    

So the solution of the Schrodinger Equation can be expressed by means 
of quantum numbers as the following: 

( ) cos( ), 1,2,3,n x B n x n                       (8.2.5) 

Again by using the normalization condition, we can get that 2B  . 
Thus another solution of the Schrodinger Equation in the potential well is 
as the following: 

( ) 2 cos( ), [0,1], 1,2,3,n x n x x n                 (8.2.6) 

Let ( ) cos( ), [0,1], 1,2,3,n x n x x n     , and we have 

( ) 2 ( ), [0,1], 1,2,3,n nx x x n                   (8.2.7) 

The function ( )n x  is also called essence wave function of the wave 
function ( )n x .  

It is interesting to note that the wave function ( ) 2 cos( )n x n x   
is not continuous at boundary points 0,1x   this time. Besides, since 

1 12 sin
2 2

2 sin 2 cos( ) ( )
2

n

n

x n x
n n

n x n x x

 

  

              
     
 

 

when the quantum number n  is very large, the two wave functions 
( )n x  and ( )n x  are almost no different; in other words, ( )n x  is just 

the situation that ( )n x  translates a 
2


 phase position to the right side.  

For visualization, the function ( )n x  can be vividly called Adam 
wave function and ( )n x  be called Eve wave function. In fact, we care 
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more about the function family of essence wave functions of Adam and 
Eve wave functions, denoted by   1( ), ( )n n n

x x  


, and we can call 

( )n x  to be Adam essence wave function and ( )n x  to be Eve essence 
wave function. Clearly ( )n x  and ( )n x  are defined on the unit inter-
val [0,1]X  . 

Step 4. Supplementary instruction for the revision of the three  
standard requirements on the wave function   

It is well known that, in physics, harmonic oscillation is often  
described by complex exponential form; for example, the two wave  
functions that we just get can be described as the following: 

( )( ) 2

2 cos( ) 2 sin( )
( ) ( )

i n x

n n

x e

n x i n x
x i x



 
 

 

 
 

                       (8.2.8) 

In classic physics, this kind of expression is said to be more convenient 
for operation but with no more physical significance. However, here we 
can find its physical significance of the complex variables function 

( ) 2 in xx e   coming from quantum mechanics. As its real part of the 

( ) 2 in xx e   , Eve wave function as being ( ) 2 cos( )n x n x   is 
determined by the second boundary condition; and its imaginary part, 
Adam wave function as being ( ) 2 sin( )n x n x   is determined by 
the first boundary condition. These mean that the two boundary condi-
tions are all useful and we cannot give up any one of them. Therefore, 
the revision of the three standard requirements is quite reasonable.  

Step 5. The extension of the domain of definition of the wave  
functions 

For any a finite closed interval[ , ]a b , by means of the linear transfor-
mation as follows: 

( )t b a x a   , 
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the essence wave function family   1sin( ),cos( )
n

n x n x  


 defined on 

the interval [0,1]  can be extended to the closed interval [ , ]a b ; we  
rewrite the variable t  to be x , and we have the following form: 

1

( ) ( )sin ,cos , [ , ]
n

n x a n x a x a b
b a b a
  



      
. 

We can easily know that the mapping as follows 

:[ , ] [0,1], ( ) x au a b x u x
b a


 


  

is a topological homeomorphism from [ , ]a b  to [0,1] . This means that 

the essence wave function family   1sin( ),cos( ) nn x n x  


and the  

family of essence wave functions 

1

( ) ( )sin ,cos
n

n x a n x a
b a b a
  



  
   

 

are not essentially different; so they are can be regarded the same.  
It is worth noting that, for Adam wave function, in the infinite deep 

square potential well, it should be written as the following complete 
form: 

( , ) ( ) 2 sin( ) , [0,1]n n
i iE t E t

nx t x e n x e x 
 

     ,      (8.2.9) 

where we only write out the expression just as being [0,1]x . And for 
Eve wave function, in the infinite deep square potential well, it should be 
written as the following complete form: 

( , ) ( ) 2 cos( ) , [0,1]n n
i iE t E t

nx t x e n x e x 
 

     ,     (8.2.10) 

where we also only write out the expression just as being [0,1]x .  
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Based on the statistical interpretation of wave functions, 2( , )x t  

should be a kind of probability density function. Then from Equations 
(8.3.9) and (8.2.10), we can learn that 22sin ( )n x  is a probability den-
sity function and 22cos ( )n x  is a probability density function too. We 
have enough reason to call 2sin ( )n x  and 2cos ( )n x  essence proba-
bility density function of the probability density functions. So we get the 
essence probability density function family of Adam wave functions and 
Eve functions as the following: 

 2 2
1

sin ( ),cos ( )
n

n x n x 



.                      (8.2.11) 

It is easy to see that  2 2
1

sin ( ),cos ( )
n

n x n x 



 is of two-phase normal-

ization property:  
2 2sin ( ) cos ( ) 1n x n x   . 

Step 6. The construction of the sequence of two-dimension probability 
density functions  

Given arbitrarily a continuous function [0,1]f C , clearly  [0,1]f  

is a closed interval, denoted by  [ , ] [0,1]Y c d f  . Let  

 ( ) [0,1] sin( ) 0,cos( ) 0X n x n x n x     . 

And we can easily know that  card ( ) 2 1X n n  . Hence we have the 
following expression: 

 ( )( ) 0,1,2, ,2n
iX n x i n   , 

where ( ) , 0,1, 2, , 2
2

n
i

ix i n
n

   . This expression means that the 

closed interval [0,1]X   are equidistantly partitioned as the following: 

( ) ( ) ( )
1

1 , 1,2, ,2
2

n n n
i i ix x x i n

n      . 
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And we let 

  ( ) ( )( ) 0,1,2, ,2n n
i iY n y f x i n    . 

For convenience, let 2m n ; but be careful, here m  means subscript 
but not the quality of some particle. We are going to discuss our problem 
from the following two cases. 

Case 1. Suppose ( )f x  is a strict monotonous function. It assumes 
that ( )f x  be a strict monotonous rising function because its proof is not 
of essence difference when ( )f x  is a strict monotonous declining func-
tion. Therefore, we have the following partition: 

( ) ( ) ( ) ( )
0 1 1

n n n n
m mc y y y y d      . 

Then we consider the particle wave functions defined in the following 
subintervals one by one: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 1 1 2 2 1 1, , , , , , , ,n n n n n n n n

m m m my y y y y y y y                 . 

Firstly we treat with it in the closed interval ( ) ( )
0 1,n ny y   . And we con-

sider the movement of a particle in the infinite deep square potential well 
that the closed interval  ( ) ( )

1 00,2 n ny y    is just the bottom margin of 

the potential well. The particle is denoted by ( )
1

nM  which can be regard-
ed as a descendant particle generated by the Adam wave function and 
Eve wave function of the original particle M  in the case of energy level 
being n . The descendant particle ( )

1
nM  moves along Oy  axis with de-

termined quality ( )
1

nm  and determined momentum ( ) ( ) ( ,1)
1 1

n n n
yp m v  and 

determined energy  

   2( )
2 1( ) ( ) ( ,1)

1 1 ( )
1

1
2 2

n
n n n

y n

p
E m v

m
  , 
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where ( ,1)n
yv  is the velocity of movement of ( )

1
nM  along Oy  axis. By 

means of the continuity of the wave function, it is easy to get the solution 
of the wave function in  ( ) ( )

1 00,2 n ny y    as following: 

   
( ,1)

( ) ( ) ( ) ( )
1 0 1 0

2( ) sin ,
2 2

1,2,3,

n
p n n n n

py y
y y y y

p

 
 

 

       (8.2.12) 

Then again, by means of the continuity of the derived function of the 
wave function, we can get another solution of the wave function in the 
closed interval  ( ) ( )

1 00,2 n ny y    as following: 

   
( ,1)

( ) ( ) ( ) ( )
1 0 1 0

2( ) cos ,
2 2

1,2,3,

n
p n n n n

py y
y y y y

p

 
 

 

         (8.2.13) 

Now we care more for the ground state of ( ,1) ( )n
p y  and ( ,1) ( )n

p y , 
i.e., the wave functions when 1p   as follows:  

   
( ,1)
1 ( ) ( ) ( ) ( )

1 0 1 0

2( ) sin ,
2 2

n
n n n ny y

y y y y
 

 
           (8.2.14) 

   
( ,1)
1 ( ) ( ) ( ) ( )

1 0 1 0

2( ) cos ,
2 2

n
n n n ny y

y y y y
 

 
          (8.2.15) 

We can omit the amplitudes of the wave and keep the essence wave  
function and do squaring operation on the essence wave functions, and 
get the probability essence wave functions as the following: 

   
2 2

( ) ( ) ( ) ( )
1 0 1 0

sin , cos
2 2n n n ny y

y y y y
 
 

.          (8.2.16) 
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The graphs of the probability essence wave functions in ( ) ( )
1 00, n ny y    

are shown in Figure 8.2.2. 
 

 
Fig. 8.2.2.  The probability essence wave functions in ( ) ( )

1 00, n ny y    

 
The next, we make a coordinate translation: ( )

0
nt y y  , and then we 

have the following expressions: 

     

     

2 2 ( )
0( ) ( ) ( ) ( )

1 0 1 0

2 2 ( )
0( ) ( ) ( ) ( )

1 0 1 0

sin sin ,
2 2

cos cos
2 2

n
n n n n

n
n n n n

y t y
y y y y

y t y
y y y y

 

 

 
 

 
 

 

Thus we transfer the probability essence wave functions defined in the 
closed interval ( ) ( )

1 00, n ny y    into the probability essence wave func-

tions in in closed interval ( ) ( )
0 1,n ny y   . And we rewrite the variable t  

back to y , and then we get the following expressions: 

       2 ( ) 2 ( )
0 0( ) ( ) ( ) ( )

1 0 1 0

sin ,cos
2 2

n n
n n n n

y y y y
y y y y

 
 

 
   (8.2.17) 

The graphs of the probability essence wave functions in ( ) ( )
0 1,n ny y    are 

shown in Figure 8.2.3. 
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Fig. 8.2.3. The probability essence wave functions in  ( ) ( )

0 1
,n ny y  

 

In that way, we can regard    2 ( )
0( ) ( )

1 0

sin
2

n
n n y y

y y





 as Adam 

probability essence wave function of the movement of the descendant 

particle ( )
1

nM  in ( ) ( )
0 1,n ny y   , and regard    2 ( )

0( ) ( )
1 0

cos
2

n
n n y y

y y





 

as Eve probability essence wave function of the movement of the  
descendant particle ( )

1
nM  in ( ) ( )

0 1,n ny y   .  

In the same way, we can get Adam and Eve probability essence wave 
functions of the movement of the descendant particles ( ) ( )

2 , ,n n
mM M  in 

the closed intervals ( ) ( ) ( ) ( )
1 2 1, , , ,n n n n

m my y y y       respectively as the  

following: 

       

       

2 ( ) 2 ( )
1 1( ) ( ) ( ) ( )

2 1 2 1

2 ( ) 2 ( )
1 1( ) ( ) ( ) ( )

1 1

sin , cos ,
2 2

sin , cos
2 2

n n
n n n n

n n
m mn n n n

m m m m

y y y y
y y y y

y y y y
y y y y

 

 
 

 

 
 

 
 



 

We get all these graphs of the probability essence wave functions  
together in the following closed intervals: 
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( ) ( ) ( ) ( ) ( ) ( )
0 1 1 2 1, , ,, , ,n n n n n n

m my y y y y y            

and they are shown in Figure 8.2.4. 
 

 
Fig. 8.2.4.  All the probability essence wave functions in    ( ) ( ) ( ) ( )

0 1 1
, ,, ,n n n n

m m
y y y y


  

 
Now we need to summarize the work that we have done as follows.  
When ( ) ( )

0 1,n nx x x    , from the information of Adam and Eve proba-

bility essence wave functions 2sin ( )n x  and 2cos ( )n x at the nodes as 
the following: 

   ( ) ( ) ( ) ( )
0 0 1 1,n n n ny f x y f x  , 

we get Adam and Eve probability essence wave functions in ( ) ( )
0 1,n ny y    

as follows: 

       2 ( ) 2 ( )
0 0( ) ( ) ( ) ( )

1 0 1 0

sin , cos
2 2

n n
n n n n

y y y y
y y y y

 
 

 
 

They have some interesting properties: one is that they can have the form 
of Adam probability essence wave functions; another is that they can also 
have the form of Eve probability essence wave functions; they are all at 
ground state, and they are all regarded as the probability essence wave 
functions of the descendant particles of M  when the quantum number is 
the natural number n .  
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When ( ) ( )
1 2,n nx x x    , from the information of Adam and Eve proba-

bility essence wave functions 2sin ( )n x  and 2cos ( )n x at the nodes as 

the following:    ( ) ( ) ( ) ( )
1 1 2 2,n n n ny f x y f x  , we can get Adam and 

Eve probability essence wave functions in ( ) ( )
1 2,n ny y    as follows: 

       2 ( ) 2 ( )
1 1( ) ( ) ( ) ( )

2 1 2 1

sin , cos
2 2

n n
n n n n

y y y y
y y y y

 
 

 
 

They also have the properties: one is that they can have the form of  
Adam probability essence wave functions; another is that they can also 
have the form of Eve probability essence wave functions; they are all at 
ground state, and they are all regarded as the probability essence wave 
functions of the descendant particles of M  when the quantum number is 
also the natural number n . 

At last, when ( ) ( )
1,

n n
m mx x x    , from the information of Adam and Eve 

probability essence wave functions 2sin ( )n x  and 2cos ( )n x at the 

nodes:    ( ) ( ) ( ) ( )
1 1 ,n n n n

m m m my f x y f x   , we get Adam and Eve probabil-

ity essence wave functions in ( ) ( )
1,

n n
m my y    as follows: 

       2 ( ) 2 ( )
1 1( ) ( ) ( ) ( )

1 1

sin , cos
2 2

n n
m mn n n n

m m m m

y y y y
y y y y

 
 

 

 
 

 

They have the same properties: one is that they can have the form of  
Adam probability essence wave functions; another is that they can also 
have the form of Eve probability essence wave functions; they are all at 
ground state, and they are all regarded as the probability essence wave 
functions of the descendant particles of M  when quantum number is n . 

Based on these probability essence wave functions, we try to make 
some useful base functions defined respectively on the intervals [0,1]   

and ( ) ( )
0[ , ] ,n n

mc d y y    : ( ) ( ) ( ) ( ) ( ) ( )
0 1 0 1, , , , , , ,n n n n n n

m mA A A B B B   as the 

following expressions: 
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( ) 2
0 10,

( ) 2
1 20,

( ) 2
2 1 3,

( ) 2
2 3 1,

( ) 2
1 2,1

( )
1,1

( ) ( ) cos ( ),

( ) ( )sin ( ),

( ) ( ) cos ( )

( ) ( ) cos ( ),

( ) ( )sin ( ),

( ) (

n

m

n

m

n

m m

n
m m

m m

n
m m

m

n
m m

m

A x x n x

A x x n x

A x x n x

A x x n x

A x x n x

A x x

 

 

 

 

 



 
  

 
  

 
  

  
  

  
  

 
  















   

   

   

( ) ( )
0 1

( ) ( )
0 1

( ) ( )
1 2

( )
2

2

( ) 2 ( )
0 0( ) ( ),

1 0

( ) 2 ( )
1 0( ) ( ),

1 0

2 ( )
1( ) ( ),

2 1

( )
1 ,

) cos ( );

( ) ( ) cos ,
2

( ) ( )sin
2

               ( ) cos ,
2

( )

n n

n n

n n

n
m m

n n
n ny y

n n
n ny y

n
n ny y

n
m y y

n x

B y y y y
y y

B y y y y
y y

y y y
y y

B y












 
 

 
 

 
 



 


 


 






   

   

   

( )
1

( ) ( )
1

( ) ( )
1

2 ( )
2( ) ( )

1 2

2 ( )
1( ) ( ),

1

( ) 2 ( )
1( ) ( ),

1

( ) sin
2

               ( ) cos ,
2

( ) ( )sin
2

n

n n
mm

n n
mm

n
mn n

m m

n
mn ny y

m m

n n
m mn ny y

m m

y y y
y y

y y y
y y

B y y y y
y y













 
 

 

 
 



 
 






 


 


 

where A  is the characteristic function of the set A ; for example, 



370 Fuzzy Systems to Quantum Mechanics 
 

( ) ( )
0 1

10,

( ) ( )
0 1

, ( ) ( )
0 1

11, 0, ,
( )

10, [0,1] 0, ,

1, , ,
( )

0, [ , ] ,
n n

m

n n

y y n n

x
m

x
x

m

y y y
y

y c d y y





 
  

 
 

       
       

     
    

 

Let us denote two classes of sets as the following: 

   ( ) ( ) ( ) ( ) ( ) ( )
0 1 0 1( ) , , , , ( ) , , ,n n n n n n

m mn A A A n B B B     

Clearly they are just the groups of base functions defined respectively  
on the closed intervals [0,1]X   and [ , ]Y c d . Clearly ( )n  is a 
linearly independent group in the continuous function space [0,1]C   
and ( )n  is a linearly independent group in the continuous function 
space [ , ]C c d . Put  

 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) , 0,1, , ,

:[0,1] [ , ] [0,1]

( , ) ( , ) ( ) ( )

n n
i j

n n
i j

n n n n
i j i j

n n A B i j m

A B c d

x y A B x y A x B y

   

  

  





 

 

It is easy to know that ( ) ( )n n   a linearly independent group in the 
continuous function space  [0,1] [ , ]C c d . Now we take the diagonal 
elements of ( ) ( )n n   to make a set as follows: 

 ( ) ( )( ) 0,1, ,n n
i in A B i m    , 

which is clearly a linearly independent group with 1 2 1m n    di-
mension in the continuous function space  [0,1] [ , ]C c d . By using 

( )n , we can get a sequence of binary nonnegative continuous func-
tions as the following: 
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( ) ( )

1

: [0,1] [ , ] [0,1]

( , ) ( , ) ( ) ( ) ,

1,2,3,

n
m

n n
n i ii

c d

x y x y A x B y

n






 

    






 

where   

 ( ) ( ) ( ) ( )

0 0
( ) ( ) max ( ) ( )

m
n n n n

i i i ii i m
A x B y A x B y

  
      . 

Then this sequence of binary nonnegative continuous functions as being
  1( , )n nx y 


 are normalized as the following: 

[0,1] [ , ] 1

0

( , )( , ) ( , ) ,
( , )

1, 2,3, ,

n
n c d d

nc

x yp x y x y
x y dxdy

n







 



 

where 

[0,1] [ , ] 2

1,     ( , ) [0,1] [ , ],
( , )

0, ( , ) [0,1] [ , ]c d

x y c d
x y

x y c d
 

 
 

   
 

Therefore   1( , )n np x y 


 becomes a sequence of probability density func-

tions defined on 2 , and ( , )np x y  is called the probability density func-
tion when the quantum number is just n .  

And now by means of the sequence   1( , )n np x y 


, we can construct a 

sequence of functions of one variable as follows: 

( , )
( ) , 1, 2,3,

( , )

n
n

n

yp x y dy
f x n

p x y dy








 


                   (8.2.18) 

Apparently,   1( )n nf x 


 is just the sequence of conditional mathematical 

expectations formed by   1( , )n np x y 


. 
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Case 2. Suppose :f X Y  be not strict monotonous function and 
not constant function.  

Because the elements of the set ( )Y n  may not always satisfy the 
monotonicity about the subscript i  as 0 1 my y y   , it is of a little 
difficulty to make the continuous base functions as follows: 

( ) ( ), 0,1, ,n
iB y i m  . 

So we have to make a permutation on the subscript set {0,1, , }m  as 
the following: 

  
0 1

0 1
,

{0,1, , } ( )
m

i

m
k k k

i m k i





 
  
 

  





 

such that the subscript set after the permutation is denoted by the follow-
ing symbol: 

 0 1( ) , , , mK n k k k   

and satisfies the following condition: 

0 1

( ) ( ) ( )( ) ( )
m

n n n
k k kc n y y y d n     .                 (8.2.19) 

Since (8.2.19) shows that the inequalities may not be strict, we have to 
consider the following two situations. 

1) Assume that 
0 1

( ) ( ) ( )( ) ( )
m

n n n
k k kc n y y y d n     . Based on these 

nodes 
0 1

( ) ( ) ( ), , ,
m

n n n
k k ky y y  in [ , ]c d  and doing in imitation of Case 1, we 

can get the continuous base functions  ( ) 0,1, ,
j

n
kB j m   as following: 

   ( ) ( )0 0
0 1

1 0

( ) 2 ( )
( ) ( ),

( ) ( ) cos ,
2n n

k k

n n
k kn ny y

k k

B y y y y
y y

 
 

 


 



  Unified Theory of Classic Mechanics and Quantum Mechanics 373 
 

   

   

   

( ) ( )1 0
0 1

1 0

( ) ( ) 1
1 2

2 1

( ) ( )1 2
2 1

1 2

( ) 2 ( )
( ) ( ),

2 ( )
( ) ( ),

( ) 2 ( )
( ) ( ),

( ) ( )sin
2

               ( ) cos ,
2

( ) ( )sin
2

     

n n
k k

n n
k k

n nm mk km m
m m

n n
k kn ny y

k k

n
kn ny y

k k

n n
k kn ny y

k k

B y y y y
y y

y y y
y y

B y y y y
y y






 

 
 

 
 

 
 

 
 

 


 


 




   

   

( ) ( ) 1
1

1

( ) ( ) 1
1

1

2 ( )
( ) ( ),

( ) 2 ( )
( ) ( ),

          ( ) cos ,
2

( ) ( )sin
2

n n mk km m
m m

n nm mk km m
m m

n
kn ny y

k k

n n
k kn ny y

k k

y y y
y y

B y y y y
y y















 
 

 
 

 


 


 

Then we easily make a sequence of binary nonnegative continuous func-
tions defined on [0,1] [ , ]X Y c d    as follows: 

( ) ( )

1
( , ) ( ) ( ) , 1, 2,3,

j j

m
n n

n k kj
x y A x B y n


                (8.2.20) 

2) Assume 
0 1

( ) ( ) ( )( ) ( )
m

n n n
k k kc n y y y d n     . Firstly we do a 

kind of screen work on the elements in the following node set: 

 0 1

( ) ( ) ( )( ) , , ,
m

n n n
k k kY n y y y  . 

In fact, let  0 1( ) , , , mK n k k k  . We define a equivalence relation on 
the set ( )K n  as being “ ” as follows: 

   ( ) ( ), {0,1, , }
s t

n n
s t k ks t m k k y y     . 

Then we get the quotient set of ( )K n  as the following: 

 ( ) 0,1, ,j
K n k j m     , 
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where jk    is the equivalence class in which jk  belongs.  

Let all the elements of the quotient set ( )K n
  be the following: 

0 1 ( )
, , ,

q mj j jk k k         , 

where 0 ( )q m m  , and stipulate the representative element 
sj

k  be the 

smallest element in 
sj

k   . Thus we have the following inequalities: 

0 1 ( )

( ) ( ) ( )
j j jq m

n n n
k k ky y y   . 

Based on the nodes 
0 1 ( )

( ) ( ) ( ), , ,
j j jq m

n n n
k k ky y y  in [ , ]c d , we make the continu-

ous base functions  ( ) 0,1, , ( )
js

n
kB s q m   as follows: 

   

   

 

( ) ( )
0 0

0 1
1 0

( ) ( )
1 0

0 1
1 0

( ) ( )
1

1 2
2 1

( ) 2 ( )

( ) ( ),

( ) 2 ( )
( ) ( ),

2 (

( ) ( ),

( ) ( ) cos ,
2

( ) ( ) sin
2

               ( ) cos
2

n nj j
k kj j

j j

n nj j
k kj j

n n j
k kj j

j j

n n
k kn ny y

k k

n n
k kn ny y

k k

kn ny y
k k

B y y y y
y y

B y y y y
y y

y y y
y y










 
  

 
  

 
  

 


 


 


 

   

   

( ) ( )( ) 1 ( ) 2
( ) 2 ( ) 1

( ) 1 ( ) 2

( ) ( ) ( ) 1
( ) 1 ( )

( ) ( ) 1

)

( ) 2 ( )

( ) ( ),

2 ( )

( ) ( ),

,

( ) ( ) sin
2

                  ( ) cos ,
2

n nj jq m q m
k kj jq m q m

j jq m q m

n n jq m
k kj jq m q m

j jq m q m

j

n

n n
k kn ny y

k k

n
kn ny y

k k

k

B y y y y
y y

y y y
y y

B







 

 
 






 
  

 
  

 


 




   ( ) ( )( ) ( ) 1
( ) 1 ( )

( ) ( ) 1

( ) 2 ( )

( ) ( ),
( ) ( ) sin

2
n n jq m q m

k kj jq m q m
j jq m q m

n n
kn ny y

k k

y y y y
y y
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Hence for the nodes 
0 1 ( )

( ) ( ) ( ), , ,
j j jq m

n n n
k k ky y y  which corresponds to the repre-

sentative elements 
0 1 ( )
, , ,

q mj j jk k k coming from these equivalence  

classes as being 
0 1 ( )

, , ,
q mj j jk k k         , we have made the continuous 

base functions  as follows: 

0 1 ( )

( ) ( ) ( )( ), ( ), , ( )
j j jq m

n n n
k k kB y B y B y . 

For any  0,1, , ( )s q m  and we can define the continuous base func-

tions corresponding to the elements in  s sj jk k     as following: 

   ( ) ( )( ) ( )
s s js

n n
j j kk k B y B y        

So for all the nodes 
0 1

( ) ( ) ( )
m

n n n
k k ky y y    in [ , ]c d , we have got the 

corresponding continuous base functions as follows: 

0 1

( ) ( ) ( )( ), ( ), , ( )
m

n n n
k k kB y B y B y . 

By using these continuous base functions, we get a sequence of binary 
nonnegative continuous functions defined on [0,1] [ , ]X Y c d    as 
the following: 

( ) ( )

1
( , ) ( ) ( ) , 1, 2,3,

j j

m
n n

n k kj
x y A x B y n


                 (8.2.21) 

Based on above two cases, we have got the sequence of binary 
nonnegative continuous functions defined on [0,1] [ , ]X Y c d    as 

being   1( , )n n
x y 


. Now we normalize   1( , )n n

x y 


 as follows: 

[0,1] [ , ] 1

0

( , )( , ) ( , ) ,
( , )

1, 2,3,

n
n c d d

nc

x yp x y x y
x y dxdy

n
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where 

[0,1] [ , ] 2

1,     ( , ) [0,1] [ , ],
( , )

0, ( , ) [0,1] [ , ]c d

x y c d
x y

x y c d
 

 
 

   
 

Therefore   1( , )n n
p x y 


 becomes a sequence of probability density func-

tions defined on 2 , and ( , )np x y  is also called the probability density 
function when the quantum number is just n . And by means of 
  1( , )n n

p x y 


, we can construct a sequence of functions of one variable 

defined on [0,1]  as follows: 

( , )
( ) , [0,1],

( , )

1, 2,3,

n
n

n

yp x y dy
f x x

p x y dy

n








 







                (8.2.18) 

Apparently,   1( )n n
f x 


 is just the sequence of conditional mathematical 

expectations formed by   1( , )n n
p x y 


. Besides, it is not under the fol-

lowing expression: 

( , )
( ) , [0,1], 1,2,3,

( , )

n
n

n

y x y dy
f x x n

x y dy












  


  

Step 7. Proof of the conclusion: the sequence of conditional mathe-
matical expectations   1( )n n

f x 


 can uniformly converge to ( )f x  on the 

closed interval [0,1] .  

Situation 1. Suppose :f X Y  be strict monotonous. We only  
consider the case that ( )f x  is  a strict monotone increasing function  
because we can treat it in the same way when ( )f x  is strict monotone 
decreasing function. 
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First of all, for the sequence of binary nonnegative continuous func-
tions   1( , )n n

x y 


, we prove the following fact: 

     [0,1] ( , ) 0
d

nc
n x x y dy     . 

In fact, for any a point [0,1]x , we can easily know the fact that 

   ( ) ( )
1{1,2, , } ,n n

i ii m x x x     . 

Then for any a point [ , ]y c d , we can learn the following fact: 

 
   

( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 1

( ) ( )
2 1

( , ) ( ) ( )

( ) ( ) ( ) ( ) , , ,

0,                                                              [ , ] ,

m
n n

n k kk

n n n n n n
i i i i i i

n n
i i

x y A x B y

A x B y A x B y y y y

y c d y y




   

 

  

        
    

 

It is easy to know the fact as the following: 

     ( ) ( )
2 1, , 0n n

i i ny y y x y     . 

Since for this fixed point [ , ]x a b , ( , )n x y  is continuous with respect 
to y , we have the following results: 

      
   

( ) ( )
2 10 , , ,

, ( , ) 0

n n
i i

n

y y y y

y y y x y

  

  

      

     
 

By using mean value theorem of integrals, there exists a point as follows: 

,
2 2

y y        
, 

such that 
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 ,

,
2 2

( , ) ( , )

( , ) ( , ) 0

d

n nc y y

n ny y

x y dy x y dy

x y dy x

 

 

 

   
  

     



   

 


 

So the fact we want to prove is true. Thus for every n  , the follow-
ing function 

( , )
( )

( , )

d

nc
n d

nc

y x y dy
f x

x y dy




 


 

must be meaningful.  
Then we prove that the sequence of single variable functions 

  1( )n n
f x 


 can converge to ( )f x  at everywhere in [0,1] .  

As a matter of fact, for any a point [0,1]x , we must have the  
following fact:  

   ( ) ( )
1{1,2, , } ,n n

i ii n x x x      . 

So we have the following expression: 

 
   

( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 1

( ) ( )
2 1

( , ) ( ) ( )

( ) ( ) ( ) ( ) , , ,

0,                                                            [ , ] ,

n
n n

n k kk

n n n n n n
i i i i i i

n n
i i

x y A x B y

A x B y A x B y y y y

y c d y y




   

 

  

        
    

 

By means of the first mean value theorem of integrals, we know the fact 
that, there exists ( ) ( )

2 1( ) ,n n
n i ix y y      , such that 

( )
1

( )
2

( )
1

( )
2

( ) ( , )( , )
( ) ( )

( , ) ( , )

n
i

n
i

n
i

n
i

yd
n nn yc

n nd y
n nc y

x R x y dyy x y dy
f x x

x y dy R x y dy
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Because ( )f x  is continuous and taking notice of ( ) ( )
2 1( ) ,n n

n i ix y y      , 

based on intermediate value theorem on continuous functions, we can 
know the following result: 

    ( ) ( )
2 1, ( )n n

i i nx x x f x x      . 

And taking notice of the fact that ( ) ( ) ( ) ( )
1 1 2 1( ) , ,n n n n

i i i if x y y y y           , we 

have the following implication: 

 

( ) ( )
1 2 0

( ) ( )

n n
i i

n

n y y

x f x f x
   

  
                         (8.2.22) 

By means of the fact that x  is arbitrarily taken in [0,1] , we get the  
following result: 

   [0,1] lim ( ) ( )nn
x f x f x


   . 

And then we prove the fact that the sequence of single variable functions 
  1( )n n

f x 


 can uniformly converge to ( )f x  in [0,1] . 

As a matter of fact, since ( )f x  is continuous in the closed interval 
[0,1] , ( )f x  must be uniformly continuous in [0,1] . So for any 0  , 
there exists N  , such that 

   ( )max 1,2, ,
3

n
in n N y i m 


        
 

   

By use of (8.2.22), for any a point [0,1]x , for any a number n  , 
when n N , we have the following expression: 

 

( ) ( )
1 2

( )

( ) ( ) ( ) ( )

3max 1,2, , 3
3

n n
n n i i

n
i

f x f x x f x y y

y i n
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All in all, we draw a conclusion: for any 0   and for any n  , 
there must exist N  , such that 

     [0,1] ( ) ( )nn n N x f x f x          

This means that   1( )n n
f x 


 can uniformly converge to ( )f x  in [0,1] . 

Situation 2. Assume ( )f x  be not strict monotonous and not a con-
stant function. We also consider two situations.   

1) Suppose 
0 1

( ) ( ) ( )( ) ( )
m

n n n
k k kc n y y y d n     . From (8.2.19), we 

have the following expression: 

( ) ( )

1
( , ) ( ) ( ) , 1,2,3,

j j

m
n n

n k kj
x y A x B y n


        

First it is not difficult to know the fact that  

     [0,1] ( , ) 0
d

nc
n x x y dy     . 

We have necessity to define that 1 0 1, n nk k k k   . Arbitrarily taken a 
point [0,1]x , clearly we have the fact as the following: 

   , {0,1, , } ,
s tk ks t n x x x     , 

and so we have the following expression: 

 
   

1 1 1 1

( ) ( )

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( , ) ( ) ( )

( ) ( ) ( ) ( ) , ,

0,                                                              [ , ]

, ,

j j

s s t t

s s t t

n
n n

n k kj

n n n n
k k k k n

n

n n n n
n k k k k

x y A x B y

A x B y A x B y y E

y c d E

E y y y y
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Let  1 1 1 1

( ) ( ) ( ) ( )min , , ,
s t s t

n n n n
k k k ky y y y y
     and  1 1 1 1

( ) ( ) ( ) ( )max , , ,
s t s t

n n n n
k k k ky y y y y
   

  . 

For clarity, we can assume that
1 1

( ) ( ),
s t

n n
k ky y y y

 


   , this makes the  

following inclusion: 

1 1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ), , , ,
s t s s t t

n n n n n n
k k k k k ky y y y y y y y

     


                 . 

So above expression can be written as the following: 

 
    1 1

1 1

( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( , ) ( ) ( )

( ) ( ) ( ) ( ) , , ,

0,                                                            [ , ] ,

j j

s s t t s t

s t

n
n n

n k kj

n n n n n n
k k k k k k

n n
k k

x y A x B y

A x B y A x B y y y y

y c d y y



 

 


  

        
    

 

By means of the first mean value theorem of integrals, there must be 

1 1

( ) ( )( ) ,
s t

n n
n k kx y y

 
    , such that 

( )
1

( )
1

( )
1

( )
1

( ) ( , )( , )
( ) ( )

( , ) ( , )

n
kt

n
ks

n
kt

n
ks

yd
n nync

n nd y
n nc y

x x y dyy x y dy
f x x

x y dy x y dy

 


 









  


 
 

Let  ( )max 1,2, ,
j

n
n kd y j m    , where we have put 

1

( ) ( ) ( ) , 1, 2, ,
j j j

n n n
k k ky y y j m


     . 

We can prove the fact that lim 0nn
d


 .  In fact, let  

 ( ) ( )
1max 1, 2, ,n n

n i ie y y i m    . 

Based on Lemma 8.2.1, we must have the following result:  

  n nn d e   . 
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By using this result and by means of the fact that ( )f x  uniformly con-
tinuous in the closed interval [0,1] , we can get lim 0nn

e


 , and then that 

the limit lim 0nn
d


  must be true.  

Then we return to the proof of the theorem. By means of above  
conclusion, we have the result: for any 0  ,  

  1 1 3nN n n N d 
 

        
 

  . 

By notice of the following implications: 

   

( ) ( )

( ) ( ) ( ) ( )

0

0
s t

s t s t

n n
k k

n n n n
k k k k

n x x

y y f x f x

  

    
 

We get the result: there must exist a number 2N  , such that 

  ( ) ( )
2 3s t

n n
k kn n N y y 


       
 

 .           (8.2.23) 

And we take  1 2max ,N N N ; for any n  , when n N , we get 
the following inequalities: 

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3 3 3 3

t s t t t s s s

n n n n n n n n
k k k k k k k k

n n

y y y y y y y y

d d    

   
      

      
 

By this expression we get 
1 1

( ) ( ) 0
t s

nn n
k ky y
 

  , and then we have  

( ) ( ) 0
s

nn
k ny x   . 

By (8.2.22) we can easily know the following limit: 

( )( ) 0
s

nn
kf x y   . 
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At last, we have the result: 

( ) ( )( ) ( ) ( ) ( ) 0
s s

nn n
n k k nf x x f x y y x        . 

This means that ( ) ( )n
n x f x  . So we have the following expres-

sion: 

   [0,1] lim ( ) ( )nn
x f x f x


   . 

Furthermore, very similar to the process we just did in Situation 1, we 
can prove that   1( )n nf x 


 can uniformly converge to ( )f x  in [0,1] . 

2)  Let 
0 1

( ) ( ) ( )( ) ( )
m

n n n
k k kc n y y y d n     . By (8.2.21), we have 

( ) ( )

1
( , ) ( ) ( ) , 1, 2,3,

j j

m
n n

n k kj
x y A x B y n


        

It is easy to know the fact that 

     [0,1] ( , ) 0
d

nc
n x x y dy     . 

Now arbitrarily taken a point [0,1]x , we must have the following  
expression: 

   ( ) ( ), {0,1, , } ,
s t

n n
k ks t m x x x     . 

Then we again consider two cases the following: 
i)  When ( ) ( )( ) ( )

s t

n n
k kB y B y , we have the expression: 

 
    1 1

1 1

( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( , ) ( ) ( )

( ) ( ) ( ) ( ) , , ,

0,                                                             [ , ] ,

j j

s s t t s s

s s

m
n n

n k kj

n n n n n n
k k k k k k

n n
k k

x y A x B y

A x B y A x B y y y y

y c d y y
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ii) When ( ) ( )( ) ( )
s t

n n
k kB y B y , we have the following: 

 
   

1 1 1 1

( ) ( )

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( , ) ( ) ( )

( ) ( ) ( ) ( ) , ,

0,                                                              [ , ]

, ,

j j

s s t t

s s t t

m
n n

n k kj

n n n n
k k k k n

n

n n n n
n k k k k

x y A x B y

A x B y A x B y y G

y c d G

G y y y y



   


  

     
 

      

 

Nevertheless, in either case, similar to the method we have used in 1), we 
have proved the following conclusion: 

   [0,1] lim ( ) ( )nn
x f x f x


   , 

and   1( )n n
f x 


 must uniformly converge to ( )f x  in [0,1] .    

Paying attention to the process of the theorem, when the quantum 
number is n , the set of the descendant particles generated by the particle 
M  is the following: 

 ( ) ( ) ( )
1 2 2, , ,n n n

n nM M M  , 

When n  , the set of all descendant particles generated by the parti-

cle M  is 
1

n
n





  . Clearly the cardinal number of the set is as be-

ing:   0card  ; i.e., we all use countable infinite particles. These 
particles can be expressed as the following expression: 

(1) (1)
1 2
(2) (2) (2) (2)
1 2 3 4
(3) (3) (3) (3) (3) (3)1,2,3,
1 2 3 4 5 6

( ) ( ) ( ) ( )
1 2 2 1 2

, ;
, , , ;
, , , , , ;

, , , , ;

n

n n n n
n n

M M
M M M M
M M M M M MM

M M M M
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where only the particle M  moves along Ox  axis, but all the descendant 
particles (1) (1) ( ) ( )

1 2 1 2, , , ,n n
nM M M M  move along Oy  axis.  

This means that the motion curve of a mass point in classic physics 
( )y f x  can be constructed by an infinite sequence of microscopic 

particles wave functions. In other words, this motion curve of a mass 
point ( )y f x  have been quantization, which is the limit state of these 
microscopic particles wave functions when n  . Clearly this fact 
meets the Bohr’s correspondence principle.  

We finally end the proof of the theorem.                                               

Example 8.2.1 Suppose we cast an object B  with quality 0m , which is 
regarded as a mass point. So the movement of B  can be described by its 
equation of locus as follows: 

 

2
2 2
0

2
0

0 0

( ) tan ,
2 cos

0, , sin 2

gy f x x x
v

vx d d
g






  

 
 

where 0,
2
   

 
 is a mass ejection angle, 0 (0, )d    is the maxi-

mum range of fire, and 0 (0, )v    is the initial velocity; here the  
air friction is omitted. Clearly  0( ) 0,y x C d , which means that the 
projectile motion is expressed by an unary continuous function.  

Now if we take 0,
4

v g   , then 0 1d  ; then we have  the  

following equation: 

2( ) (1 )y f x x x x x     . 

When the quantum number 5,10,20n  , the approximation situations of 
the sequence of conditional mathematical expectations ( )nf x  to ( )f x  
are respectively shown  in Figure 8.2.5, 8.2.6 and 7.2.7., where red curve 
means ( )nf x , and blue curve indicates ( )f x .                                         
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Fig. 8.2.5.  Approximation of 5 ( )f x  to ( )f x  

 

 
Fig. 8.2.6.  Approximation of 10 ( )f x to ( )f x  

 

 
Fig. 8.2.7.  Approximation of 20 ( )f x to ( )f x  
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8.3   Duality of Mass Point Motion 

We firstly review the projectile motion in Example 8.2.1. The property of 
mass point motion is shown as its momentum 0 0p m v  and its energy as 
the following: 

2
0 0

1
2kE E m v  . 

Actually, more straightway, its property of mass point should be  
described by its equation of locus as the following: 

2
2 2
0

( ) tan
2 cos

gy f x x x
v




    

In other words, either the property of mass point can be described by its 
momentum and energy or by its equation of locus; these two methods are 
equivalent.  

Then we raise an interesting and important problem: is there wave  
nature on mass point motion in classic physics? Alternatively, we can ask 
the question: is there wave mass point duality in classic physics?   

For answering this problem, we firstly review the particle nature and 
wave nature in quantum mechanics. As we all know, a microscopic parti-
cle has no determinate movement locus so that it has no an equation  
describing its movement locus. Thus, its nature of particle can only be 

described by its momentum p mv  and its energy 21
2

E mv . Based 

on the viewpoint of de Broglie, an object particle is of wave-particle  
duality, which means the particle also has its nature of wave. The nature 
of wave should be shown by its wave function  , and the wave function 
  should be the solution of. The wave as being the solution of 
Schrodinger Equation is called de Broglie wave. Then Born gave 
Schrodinger Equation the statistical interpretation of de Broglie wave, 
which means that 2  should be a kind of probability density function. 

So 2  is often called probability wave. In fact, in quantum mechanics, 
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the probability wave 2  is much more important than the wave  

function   itself.  
Again, we consider the movement of the particle in the infinite deep 

square potential well as we have discussed in Step 1 in Theorem 8.2.1, 
where the wave function is as following: 

( ) 2 sin( ), [0,1], 1,2,3,n x n x x n      

Then, its probability wave is 2 2( ) 2sin ( )n x n x  , which figure is 

shown in Figure 8.3.1. 
 

 
Fig. 8.3.1.  The nature of waves of ( )n x  and 

2( )n x  

 
It is worth noting that, the probability wave 2( )n x  describes the 

probability density that the particle M  appears at x  in [0,1]  when the 
quantum number is n . Because the particle M  does one-dimension  
motion along Ox  axis, 2( )n x  is a curve on two-dimension plane.  

It is well-known that the wave nature of simple harmonic wave is con-
structed by its frequency   and its wave length  . When the quantum 

number is n , its energy expression is 
2 2 2

2n
nE

m





, and the wave fre-

quency is as following: 
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1
2 2 2 2

nn
n

n

mEk n n
T


  

    


. 

Based on the definition of wave length, we know the wave length is 
2

n n
   so that 

2 2
n

nn mE
  


. 

This just gives the result that 1n n   , which means that the relation 
between the wave nature and the particle nature can be established by 
using Planck number  . 

Now we return to continue to discuss the motion of projectile. Its mass 
point nature reflected in its equation of locus.  

Especially, when 0,
4

v g   , the equation of locus is as follows: 

2( ) (1 ), [0,1]y f x x x x x x      . 

Because this sequence of conditional mathematical expectations as being
  1( )n nf x 


 uniformly converges to ( )y f x  in [0,1] , for arbitrarily 

given a 0  , there must exist a natural number N  , such that 

   nn n N f f       , 

where   is a kind of norm in the linear normed space  [0,1],C   and 

defined as the following: 

   [0,1]
[0,1] max ( )

x
f C f f x


  

. 

For 0   is small enough, that nf f    means that the difference 

between nf  and f is very small so that nf  can be replaced by f   
approximately.  
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We now take notice of the following important expression: 

1

0
1

0

( , ) ( , )
( ) ( )

( , ) ( , )

d

n nc
n d

n nc

yp x y dy yp x y dy
f x f x

p x y dy p x y dy
   

 
, 

for above the motion of projectile where 0, 1c d  , where ( , )np x y  is 
a binary probability density function.  

When the quantum number 5,10,15n  , the graphed of the probabil-
ity density function ( , )np x y  are respectively shown in Figure 8.3.2, 
8.3.3 and 8.3.4. 

 

 
Fig. 8.3.2.  Graph of 5 ( , )p x y  

 
 

 
Fig. 8.3.3. Graph of 10 ( , )p x y  

 



  Unified Theory of Classic Mechanics and Quantum Mechanics 391 
 

 
Fig. 8.3.4.  Graph of 15 ( , )p x y  

 
Apparently, the probability density function ( , )np x y  shows up wavi-

ness. We observe the motion curve of the projectile, and suppose some 
mass point B  moves in the rectangle as in Fig 8.3.5, and the probability 
density function that B  falls into the set of graph of ( )f x  as follows 

 ( , ) [0,1] [0,0.25] ( )fG x y y f x                     (8.3.1) 

is just ( , )np x y . 
 

 
Fig. 8.3.5.  Graph of the motion of projectile 

 
 

It is worth noting that, since the mass point B  moves in a two-
dimension region, the probability density function ( , )np x y  is a wave 
surface in three-dimension space. From Figure 8.3.1, we can learn that, 
since the particle M  moves in [0,1]  on Ox  axis, the probability wave 
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2( )n x  mainly roots in [0,1] ; while from Figure 8.3.4, we  also can 

learn that, since the mass point B  moves in  fG  on x y  plane, the 

probability wave ( , )np x y  roots in fG .  

Above discussion reveals an important conclusion: the motion of mass 
point in classic mechanics is surely of waviness so that the motion of 
mass point in classic mechanics also has wave mass point duality, which 
is very same with wave-particle duality in quantum mechanics.  

Furthermore, the relationship between the wave nature and particle  
nature is established by means of Schrodinger Equation and the energy of 
the particle E  and the momentum of the particle p  can be respectively 
expressed by the frequency   and the wavelength   of the particle as 
the following: 

22 ,E p  


 
 . 

While in classic mechanics, the relation between the mass point nature 
and waviness of motion of mass point is related by means of the follow-
ing integral equation: 

( , )
( ), ( , ) [ , ] [ , ]

( , )

d

c
d

c

yp x y dy
f x x y a b c d

p x y dy
  


              (8.3.2) 

where  ( , ) [ , ] [ , ]p x y C a b c d   is an unknown binary function satis-

fying the following conditions:  
(1)    ( , ) [ , ] [ , ] ( , ) 0x y a b c d p x y    ; 

(2)   [ , ] ( , )d 0
d

c
x a b p x y y   . 

(3) ( , )d d 1
d b

c a
p x y x y   . 

Because ( )y f x  is the equation of locus of motion of the mass point, 
it completely represents the mass point nature of motion of the mass 
point; while ( , )p x y  is the probability density function which is the 
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probability wave of itself so that ( , )p x y  itself represents the waviness 
of motion of the mass point. And the relation between the mass point  
nature and the wave nature is related by means of the integral equation 
(8.3.2). This adequately explains that the motion of mass point in classic 
mechanics has the duality of wave mass point, or written by wave-mass-
point duality. 

Here we need to explain that to solve the integral equation (8.3.2) is 
not an easy thing; however, we have given a kind of approximate method 
to do it; actually,   1( , )n n

p x y 


 is a sequence of approximate solutions of 

the integral equation because if we write 

( , )
( )

( , )

d

nc
n d

nc

yp x y dy
f x

p x y dy
 


, 

then we have lim 0nn
f f


   based on Theorem 8.2.1.  

How about the properties of convergence of the sequence 
  1( , )n n

p x y 


? We see the following theorem. 

Theorem 8.3.1 1) ( , ) 0
n

np x y


 , i.e.   1( , )n np x y 


 converges in meas-

ure to zero function 0 as follows: 

0 :[ , ] [ , ] , ( , ) 0( , ) 0a b c d x y x y    . 

2) The sequence of binary functions   1( , )n n
p x y 


 does not converge 

in the set     , ( ) , , ( )fG a f a b f b .  

We omit the proof.                                                                                 

Because the sequence   1( , )n n
p x y 


 converges in measure and the two 

functions ( , )np x y  and ( , )nyp x y  are bounded in 2  with respect with 
every n , based on Lebesque dominated convergence theorem, the limit 
operation and integral operation can exchange order, i.e., 
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lim ( , ) lim ( , ) 0,

lim ( , ) lim ( , ) 0

n nn n

n nn n

yp x y dy y p x y dy

p x y dy p x y dy

 

  

 

  

 

 

 
 

 

so that 

lim ( , ) ( , )0
( ) lim ( ) lim

0lim ( , ) ( , )

n nn
nn n

n nn

yp x y dy yp x y dy
f x f x

p x y dy p x y dy

 

 
  

 

   
 
 

 

This means that the limit function of convergence in measure as follows: 

lim ( , ) 0nn
p x y


  

is not a solution of the integral Equation (8.3.2). But for every quantum 
number n  , the probability wave function ( , )np x y  must be a solu-
tion of the following integral equation: 

( , )
( )

( , )

d

c
nd

c

yp x y dy
f x

p x y dy



,                          (8.3.3) 

And the sequence of functions ( )nf x  can uniformly converge to ( )f x . 

In other words, the sequence of binary functions   1( , )n n
p x y 


 must be 

approximate solutions of the integral Equation (8.3.2).  
Another thing we should point out is that, about the probability wave 

function ( , )np x y , there should be a binary function ( , )n x y , such 
that 

2( , ) ( , )n nx y p x y  ; 

while ( , )n x y  should be a solution of a kind of 2 order partial differen-
tial equation. From the structure of ( , )np x y , we can learn that 

( , )n x y  has not determined frequency and determined wave length but 
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has frequency conversion and length conversion. Thus we can think that 
the 2 order partial differential equation should be a kind of 2 order partial 
differential equation with variable coefficients. 

8.4   An Important Mathematical Conclusion Generated By  
Theorem 8.2.1  

Based on Theorem 8.2.1, we can get an important and interesting math-
ematical conclusion. 

Theorem 8.4.1  For arbitrarily given a continuous function [ , ]f C a b , 

there must exist a sequence of probability spaces    1
, , n n

P



   and a 

sequence of random vectors    1
,n n n

 



, where every random vectors 

 ,n n   is defined on the probability space  , , nP  , such that the 

sequence of conditional mathematical expectations   
1n n n

E x 



  

converges uniformly to ( )f x  in [ , ]a b , i.e., for any 0  , there must 
exist a natural number N  , such that, for any n  , if n N , 
then we have the following result: 

    [ , ] ( )n nx a b E x f x       , 

where {1,2,3, }    and {0,1,2, }  . 

Proof.  Case 1. Suppose ( )f x  be not constant function. By means of the 
method in the proof of Theorem 8.2.1, we can get the sequence of proba-
bility density functions   1( , )n np x y 


. If we let 

( , ) ( , )
x y

n nF x y p u v dudv
 

   . 

Then   1( , )n nF x y 


 must be a sequence of distribution functions. Now 

we can take 2
2,     , where 2  is a Borel   algebra on 2 , 
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and nP  is taken as the probability measure corresponding to ( , )nF x y , 
which we know that nP  is existing and unique. Thus, we get a sequence 
of probability spaces as follows: 

     2
21 1

, , , ,n nn n
P P



 
    . 

Then, on every probability space  , , nP  , we define a random  

vector as following: 

 
     

2

1 2 1 2

, :

, ( ) ( ), ( ) ,
n n n

n n n

  

          

 

  




 

For any 2( , )x y  , we take notice of the following fact: 

   
 

1

1 2

2

( )

( , ], ( , )

( , ] ( , )

n x x

x

x

    

  

    

      

       

 

This means that ( )n   is surely a random variable defined on 

 , , nP  ; in the same way, ( )n   is also a random variable defined 

on  , , nP  . So    1 2( ) ( ), ( ) ,n n n            is just a 

random vector defined on  , , nP  . 

Let the distribution function of ( )n   be ( , )
n

F x y . For any a binary 

point 2( , )x y  , since nP  is the probability measure corresponding to 
the distribution function  ( , )nF x y , we have the following expression: 

  
  1 2

( , ) ( ) , ( )

,
n n n n

n

F x y P x y

P x y

     

  

   

   
 

 ( , ] ( , ] ( , )n nP x y F x y      
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This means that the distribution function ( , )

n
F x y  of ( )n   is just the 

distribution function  ( , )nF x y , i.e.,  

( , ) ( , )
n nF x y F x y  . 

Therefore, we can get the sequence of conditional mathematical expecta-
tions as follows: 

  
1n n n

E x 



  

of the random vectors     1 1
,n n nn n

  


 
 , where  

 
( , )

, 1, 2,3,
( , )

n
n n

n

yp x y dy
E x n

p x y dy
 








  


  

By noticing the significance of   1( )n nf x 


 in Theorem 8.2.1, we have 

    ( )n n nn E x f x     . 

Because lim 0nn
f f


  , the sequence of conditional mathematical 

expectations   
1n n n

E x 



  uniformly converges to ( )f x  in [ , ]a b .  

Case 2.  Suppose ( )f x  be a constant function, i.e., 

     [ , ] ( )x a b f x      . 

This is a kind of degenerate situation so that we take the following  
degenerate distribution function: 

0, ( , ),
( )

1, [ , )
y

F y
y
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We can make a probability space  , , P   such that P  is just a the 

probability measure corresponding to ( )F y  and 1
1,     . We 

define a random variable as the following: 

1: , ( )       . 

It is easy to know that the distribution function of   is just ( )F y . Take 

the notice of the following fact: 

     ( )

( ) ( 0) 1 0 1

P P

F F 

      

 

    

     
 

And we know that ( )E    which means that ( ) ( )f x E  . Then we 
take another random variable   defined on  , , P   with require-
ment that   is independent with  ; hence, ( , )   can be regarded as  
a random vector defined on  , , P  . Thus, we have the following 

expression: 

  ( )E x E      . 

Furthermore, we can define a sequence of random vectors    1
,n n n

 



 

as the following 

    , ( , )n nn       . 

Clearly   
1n n n

E x 



  can uniformly converges to ( )f x  in the 

closed interval [ , ]a b .                                                                                

8.5   Approximation Theory Significance of Theorem 8.2.1 

In above section, we prove an important conclusion: the sequence of 



  Unified Theory of Classic Mechanics and Quantum Mechanics 399 
 

conditional mathematical expectations   
1n n n

E x 



  uniformly 

converges to the continuous function ( ) [ , ]f x C a b  in [ , ]a b . Now we 

consider the signification of approximation theory of   
1n n n

E x 



  

with respect to the continuous function ( )f x .  
Our discussion is under the form on the continuous function space 
[ , ]C a b . For doing this work, we define two algebraic operations in the 

space [ , ]C a b , additive operation “ ” and scalar multiplication “  ” as 
the following: 

  

  

: [ , ] [ , ] [ , ]
           ( , ) ( , ) ,

[ , ] ( )( ) ( ) ( ) ;
: [ , ] [ , ]

      ( , ) ( , ) ,
[ , ] ( )( ) ( )

C a b C a b C a b
f g f g f g

x a b f g x f x g x
C a b C a b

a f a f a f
x a b a f x a f x

  
  

    

  
  

    






 

Clear  [ , ], , ,C a b    is a linear space, simply denoted by [ , ]C a b . In 
the space [ , ]C a b , we define a norm as follows: 

[ , ]

: [ , ] [0, )
( ) max ( )

x a b

C a b

f f f f x


  

    

Then  [ , ],C a b   is a linear normed space, also simply denoted by 

[ , ]C a b . In fact, we all know that [ , ]C a b  is a Banach space with infi-
nite dimension.  

Suppose ( ) [ , ]f x C a b  be a “complicated” function. For every natu-
ral number  m  , we try to find 1m   a group of simple functions: 

 ( ) ( ) ( )
0 1( ) ( ), ( ), , ( ) [ , ]m m m

mm x x x C a b     , 
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and 1m   constants ( ) ( ) ( )
0 1, , ,m m m

ma a a   , which there at least be one 
number not being zero, such that the function ( )f x  can be linearly  
expressed by ( )m  approximately as the following: 

  ( ) ( )

0
[ , ] ( ) ( )

m
m m

i i
i

x a b f x a x 


 
    

 
 . 

where 0   is a kind of approximation accuracy beforehand given by 
us. Let  

( ) ( )

0
( ) ( )

m
m m

m i i
i

F x a x


  , 

and we get a sequence of continuous functions   1( )m mF x 


 coming from 

[ , ]C a b . Above expression means that the sequence of continuous func-

tions   1( )m m
F x 


 uniformly converges to ( )f x  in [ , ]a b , which tells us 

the fact as follows:  

       0 mN m m N F f             . 

For this  , when m N ,  span ( ),n   is regarded as a 1m    

dimension linear subspace of  [ , ],C a b  , such that 

   ( ) ( ) ( )
0 1, , ,m m m

m ma a a f f       

Where span ( )m  is the linear subspace of [ , ]C a b  generated by the 
group of linearly independent elements as the following: 

 ( ) ( ) ( )
0 1( ) ( ), ( ), , ( )m m m

mm x x x     . 

In other words, under the condition that   is given in advance, we can 
use a kind of linear combination of the base elements of the linear 
normed subspace span ( )m , as follows: 

( ) ( )

1
( ) ( )

m
m m

m i i
i

F x a x
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to approximately replace ( )f x , or we can say that, ( )nf x  can approxi-
mates to ( )f x  reaching the precision   given by us in advance. This is 
the base idea of function approximation theory.  

We have known the fact that the sequence of functions  ( )mF x   
uniformly converges to ( )f x  in [ , ]a b ; however, we need more  

requirements for the sequence of functions   1( )m mF x 


, which is stated 

as being: for any a point [ , ]x a b  and for any 0  , there must exist 
N  , such that, for any a natural number m  , if m N , then 

      ( , ) [ , ] mx x x a b F x f x        . 

This means that there are many points x  in [ , ]a b , such that  

   mF x f x  , 

and these points spread all over [ , ]a b . This just leads to the interpolation 
approximation problem.  

First, we make a partition on [ , ]a b  as the following: 

( ) ( ) ( )
0 1

m m m
ma x x x b     , 

where the partition does not need to be equidistant. Let 

 
 
 

( )

( ) ( )

( )

( ) 0,1, , ,

, 0,1, , ,

( ) 0,1, ,

m
i

m m
i i

m
i

X m x i m

y f x i m

Y m y i m

 

 

 







 

By using the set of nodes ( )X n , we make the group of base functions as 
follows: 

 
  

( ) ( ) ( )
0 1

( )

( ) ( ), ( ), , ( ) ,

{0,1, , } ( ) [ , ] ,

m m m
m

m
i

m x x x

i m x C a b
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and ( ) ( ) ( )
0 1( ), ( ), , ( )m m m

mx x x    are linearly independent and with 
Kronecker condition:  

 ( ) ( ) , , 0,1, ,m m
i j ijx i j m    . 

In ( ) ( )

0
( ) ( )

m
m m

m i i
i

F x a x


  , we take ( ) ( )m m
i ia y , and we have follow-

ing expression: 

 ( ) ( ) ( ) ( )

0 0
( ) ( ) ( )

m n
m m m m

m i i i i
i i

F x y x f x x 
 

    

This is just an interpolation function, which satisfies the interpolation 
condition:  

      ( ) ( ){0,1, , } m m
m i ii m F x f x   . 

All in all, because ( ) span ( )mF x m   and ( ) [ , ]f x C a b , and by  
noticing that span ( )m  is a linear subspace with finite dimension of 

[ , ]C a b , for any 0   , there must exist m  , such that the element 
in [ , ]C a b , ( )f x , can be approximate by the element in span ( )m , 

( )mF x , which means mF f   .      

Definition 8.5.1  The sequence of conditional mathematical expectations  
as the following: 

  
1n n n

E x 



  

in Theorem 8.4.1 is called the sequence of conditional mathematical  
expectations generated by the continuous function ( )f x .                       

Theorem 8.5.1 Arbitrarily given a continuous function ( ) [ , ]f x C a b , 

but ( )f x  not being a constant function,   
1n n n

E x 



  is the se-

quence of conditional mathematical expectations generated by the  
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continuous function ( )f x , then by means of   
1n n n

E x 



  we can 

make a group of continuous base functions as follows: 

 ( ) ( ) ( )
0 1( ) ( ), ( ), , ( )m m m

mm x x x     , 

where ( )2 , ( ) [ , ], 0,1, ,m
lm n x C a b l m    , such that the sequence 

of interpolation functions formed by using  ( )m  as the following: 

( ) ( )

0
( ) ( ) , 2 , 1, 2,3,

m
m m

m l l
l

F x x y m n n


     

can uniformly converges to ( )f x  in [ , ]a b . 

Proof.  For convenience, we only consider the situation as [ , ] [0,1]a b  , 
since for the general situation [ , ]a b , we can use a kind of linear trans-
formation to transfer it into [0,1] . 

Case 1. Suppose ( )f x  be a strict monotonous function. We can  
assume ( )f x  be a strict monotonously increasing function, because for 
a strict monotonously decreasing function, the proof is the same.  
For any a point [0,1]x , there must exist {1,2, , }, 2i m m n  , 

such that ( ) ( )
1 ,n n

i ix x x    . Thus 

 
   

( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 1

( ) ( )
2 1

( , ) ( ) ( )

( ) ( ) ( ) ( ) , , ,

0,                                                             [ , ] ,

m
n n

n k kk

n n n n n n
i i i i i i

n n
i i

x y A x B y

A x B y A x B y y y y

y c d y y




   

 

  

        
    

 

Now we consider two integrals in the following expression: 

 
( , )

( , )

d

nc
n n d

nc

y x y dy
E x

x y dy
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as being ( , )
d

nc
y x y dy  and ( , )

d

nc
x y dy . Based on the definition of 

definite integral, we have the following expressions: 

 
 

 
 

( ) ( ) ( )

0 1

( ) ( )

0 1

( , ) lim , ,

( , ) lim , ,

k

k

kd k k k
n l n l lc T l

kd k k
n n l lc T l

y x y dy y x y y

x y dy x y y





 

 







 

 




 

where    ( ) ( ) ( )
1max 1,2, ,k k k

k l l lT y y y l k        and kT  repre-

sents the partition of [ , ]Y c d  as the following: 

 
( ) ( ) ( )
0 1

( ) ( ) ( )

,

( ), ,

0,1, ,

k k k
k

k k k
l l l

c y y y d

x a lh k y f x

l k

    

  







 

We should know that k  is different with n , where n  is a fixed subscript 
for the moment, while k  is going to approach infinite.  
Because ( )f x  is continuous,   0kT k    , and then above 

expressions can be written as the following: 

 

 

( ) ( ) ( )

1

( ) ( )

1

( , ) lim , ,

( , ) lim ,

kd k k k
n l n l lc k l

kd k k
n n l lc k l

y x y dy y x y y

x y dy x y y

 

 







 

 




 

Let ( ) ( )
0 1

k ky y   . Since the binary functions ( , )n x y  are bounded, 
actually, 0 ( , ) 1n x y  , and ( )f x  is also bounded, we must have the 
following expression: 

      ( ) ( )
0 0( ) 0 , ( )k k

nM x k y x y M x     . 

And then we get the following limit expression: 
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   ( ) ( ) ( ) ( ) ( )
0 0 0 0 0lim , 0 lim ,k k k k k

n nk k
y x y y x y y 

 
          , 

and by this we have the following result: 

 

   

 

 

   

( ) ( ) ( )

1

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

1

( ) ( ) ( )

0

( ) ( )

1

( ) ( ) ( ) ( )
0 0

1

lim ,

lim , ,

lim , ,

lim ,

lim , ,

l

k
k k k

l n l lk l

k
k k k k k k

n l n l lk l

k
k k k

l n l lk l
k

k k
n l lk l

k
k k k k

n n l lk l

y x y y

y x y y y x y y

y x y y

x y y

x y y x y y



 





 


















      

 



 
     













 ( ) ( )

0
im ,

k
k k

n l lk l
x y y






 

so that 

 

 

( ) ( ) ( )

0

( ) ( )

0

( , ) lim , ,

( , ) lim ,

kd k k k
n l n l lc k l

kd k k
n n l lc k l

y x y dy y x y y

x y dy x y y

 

 







 

 




 

We easily know the two facts:   [ , ] ( , ) 0
d

nc
x a b x y dy    and  

 ( ) ( )

0
( , ) lim ,

kd k k
n n l lc k l

x y dy R x y y




  . 

So, for any a point [ , ]x a b , there must exists a number ( )N x  , 
such that  
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   ( ) ( )

0
( ) , 0

k
k k

n l l
l

k k N x x y y


       
 

  

Thus, when ( )k N x , we have the following result: 

 
 

 

 

 
 
 

( ) ( ) ( )

0

( ) ( )

0

( ) ( ) ( )
( ) ( )

( )0

( ) ( ) ( ) ( )0

0 0

lim ,( , )

( , ) lim ,

, ,
lim lim

, ,

lim

k
k k kd

l n l lknc l
n n d k

k k
n n l lc k l

k
k k k

k kl n l l k
n l l kl

lk kk kk k k kl
n l l n j j

l j

y x y yy x y dy
E x

x y dy x y y

y x y y x y y
y

x y y x y y


 

 

 

 









 


 


  



 
  

 




 




 

 

 
 
 

( ) ( ) ( )
( ) ( )

( )0

( ) ( ) ( ) ( )0

0 0

, ,
lim

, ,

k
k k k

k kl n l l k
n l l kl

lk kk kk k k kl
n l l n j j

l j

y x y y x y y
y

x y y x y y

 

 



 


 

 
 

 




 

 

And we let   

 
 

( ) ( )
(2 )

( ) ( )

0

,
( ) , 0,1, ,

,

k k
n l ln

l k
k k

n j j
j

x y y
x l k

x y y








 


 ; 

then above expression can be simply written as the following: 

 (2 ) ( )

0
lim ( )

k
n k

l l n nk l
x y E x  




  .                 (8.5.1) 

If we write the following expression: 

( ) ( )

0
( ) ( )

k
m k

mk l l
l

F x x y


  , 
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then we can get a sequence of continuous functions with the double  
subscripts   , 1( )nk n kf x 


. Then we put 

 ( ) ( ) ( )
0 1( ) ( ), ( ), , ( )m m m

m kk x x x     . 

It is easy to know that ( ) ( )

0
( ) ( )

k
m k

mk l l
l

F x x y


   is just an interpolation 

function where ( )m k  is regarded as the group of base functions.  
Then we especially let 2k n m  , i.e., we only take a subsequence 

of the sequence   , 1( )mk n kF x 


, so that we can gain a sequence of contin-

uous functions with single subscript   1( )m nF x 


, where 

( ) ( )
,

0
( ) ( ) ( ) ,

2 , 1, 2,3,

m
m m

m m m l l
l

F x F x x y

m n n




 

 




 

And then we let  

 ( ) ( ) ( )
0 1( ) ( ) ( ), ( ), , ( )m m m

m mm m x x x       . 

Then ( ) ( )

0
( ) ( )

m
m m

m l l
l

F x x y


   is an interpolation function whose base 

function group is ( )m .  

Now we can prove the conclusion:   1( )m n
F x 


 uniformly converges to 

( )f x  in [ , ]X a b .  
We first inspect the 1m   unary functions with respect to variable x  

as being  ( ), , 0,1, ,m
n lx y l m   . In fact,  ( ) ( )n m

i lB y  has the well-

known Kronecker property:  

   ( ) ( ) 1, ,
, {0,1, , }

0,
n m

i l il

i l
i l m B y

i l
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So we must have the following expression: 

    ( ) ( ) ( ) ( ) ( )

0
, ( ) ( )

m
m n n m n

n l i i l li
x y A x B y A x


    , 

and then we have the following results: 

 

 

 
 

( ) ( ) ( ) ( ) ( )

0 0

( ) ( ) ( ) ( )

0 0

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

0 0

, ( ) ,

, ( ) ,

, ( )( ) ,
, ( )

0,1, , ,

m m
m m m n m

l n l l l l l
l l
m n

m m n m
n l l l l

l l

m m n m
n l lm l l

l m m
m m n m

n j j j j
j j

y x y y y A x y

x y y A x y

x y y A x yx
x y y A x y

l m










 

 

 

  

  

 
 

 



 

 

 


 

so that  
( ) ( )

( ) ( ) ( )

( ) ( )0 0

0

( )( ) ( )
( )

n mm m
m m ml l

m l l lm
n ml l

j j
j

A x yF x y x y
A x y


 




  


 


         (8.5.2) 

Because the group of functions ( ) ( ) 0,1, ,m
l x l m    is linearly inde-

pendent, and ( )

0
( ) 1

m
m

l
l

x


 , and  ( )span ( ) 0,1, ,m
l x l m    forms a

1m   dimension linear normed subspace of [ , ]C a b , if we regard the 

function group  ( ) ( ) ( )
0 1( ) ( ), ( ), , ( )m m m

mm x x x      as a group of 

base functions, then 

( ) ( )

0
( ) ( )

m
m m

m l l
l

F x x y


  .                             (8.5.3) 

is just a piecewise interpolation function based on the group of base 
functions ( )m . 
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By above discussion, we can turn to prove the conclusion:   1( )m n
F x 


 

uniformly converges to ( )f x  in [ , ]a b .   
Actually, arbitrarily taken a point [0,1]x , then  

   ( ) ( )
1{1,2, , } ,n n

i ii m x x x     , 

so that 

( ) ( ) ( ) ( ) ( ) ( )
1 1

0
( ) ( ) ( ) ( )

m
m m m m m m

m l l i i i i
l

F x x y x y x y   


    

Because ( )f x  is continuous, there must exist two points as the  
following: 

( ) ( ) ( ) ( )
1, ,n n n n

i i i ix x      , 

such that 

   
( ) ( ) ( ) ( )

1 1

( ) ( )

, ,
min ( ), max ( )

n n n n
i ii i

n n
i i

x x x x x x
f f x f f x 

 
       

   

We can easily learn the following facts: 

    ( ){0,1, , } [ , ] [0,1] ,m
ll m a b    

  ( ) ( ) ( ) ( )
1 1, ( ) ( ) 1n n m m

i i i ix x x x x         

So we get the following result: 

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1, ( )n n n m m m m n

i i i i i i i ix x x f x y y f            . 

Since    ( ) ( ) ( ) ( )
1 1 ,n n n n

i i i iy f x y f x   , for any ( ) ( )
1 ,n n

i ix x x    , we have 

the following inequality: 
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( ) ( ) ( ) ( )
1 1

( ) ( )

( ) ( ) ( ) ( )

                      

m m m m
m i i i i

n n
i i

f x F x f x x y y

f f

 

 

    

 
 

Because ( )f x  is uniformly continuous in [ , ]a b , for any 0  , there 
exists  0  , such that 

   , [ , ] ( ) ( )u v a b u v f u f v        . 

We take ( )h n  , and we must have the following inequality: 

   ( ) ( )n n
i if f    , 

and then we get the inequality as follows: 

   ( ) ( )
1 , ( ) ( )n n

i i mx x x f x F x       . 

Since ( ) 0h n n   , there exists N  , such that 

  ( )n n N h n      , 

and we get the following expression: 

      [ , ] ( ) ( )mm m N x a b f x F x         . 

This means that the sequence of interpolation functions   1( )m nF x 


 uni-

formly converges to the continuous function ( )f x  in [ , ]X a b . 
Case 2. Suppose ( )f x  not be strict monotone function. Very similar 

to the method in the proof of Theorem 8.2.1, we can get the following 
binary functions: 

 ( ) ( )

0
( , ) ( ) ( )

j j

m
n n

n k kj
x y A x B y


    

By means of them we can get the following sequence of interpolation 
functions: 
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( ) ( )
( ) ( ) ( )

( ) ( )0 0

0
( ) ( )

( )

( ) ( )

0

( )
( ) ( ) ,

( )

( )
( ) , 0,1, ,

( )

l l

l l

s s

l l

s s

n mm m
k k m m m

m k l km
n nl l

k k
s

n m
k km

l n
n m

k k
s

A x y
F x y x y

A x y

A x y
x l m

A x y





 






  




 



 





 

Very similar to Case 1, we can prove that the sequence of interpolation 
functions   1( )m n

F x 


 uniformly converges to the continuous function 

( )f x  in the universe [ , ]X a b . 
We finally completely finish the proof of this theorem.                        

Remark 8.5.1  If we let  

( )
( )

( ) ( )

0

( ) , 0,1, ,
( )

m
m l

l m
n m

j j
j

yw x l m
A x y




 


 , 

then we have the following expression: 

( ) ( )
( ) ( ) ( )

( ) ( )0 0

0

( ) ( ) ( )

0

( )( ) ( )
( )

        ( ) ( )

n mm m
m m ml l

m l l lm
n ml l

j j
j

m
m n m

l l l
l

A x yF x x y y
A x y

w x A x y


 






  





 




 

If we regard ( ) ( ) ( )
0 1( ), ( ), , ( )n n n

nw x w x w x  as a group of weight func-
tions, then based on Theorem 8.5.1 we can get the following interpola-
tion function: 

( ) ( ) ( )

0
( ) ( ) ( )

n
n n n

n l l l
l

f x w x A x y
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which is clearly a kind of weighed form of the piecewise interpolation 

function ( ) ( )

0
( ) ( )

m
n m

m l l
l

g x A x y


  ; in other words, it is a kind of  

amendment for the expression ( ) ( )

0
( ) ( )

m
n m

m l l
l

g x A x y


  , although  the 

following equation: 
( ) ( ) ( )

0
( ) ( ) ( )

m
m n m

n l l l
l

F x w x A x y


  

is also an interpolation function.                                                                

Remark 8.5.2   Because the piecewise interpolation function as follows 

( ) ( )

0
( ) ( )

m
n m

m l l
l

g x A x y


   

is based on the following group of base functions: 

 ( ) ( ) ( )
0 1( ) ( ), ( ), , ( )n n n

mm A x A x A x    

If we let  

 ( ) ( ) ( )
0 1( ) ( ), ( ), , ( )m m m

mW m w x w x w x  , 

then we have the following expression: 

 
 

( ) ( ) ( )
0 1

( ) ( ) ( ) ( ) ( ) ( )
0 0 1 1

( ) ( ), ( ), , ( )

( ) ( ), ( ) ( ), , ( ) ( )

( ) ( )

m m m
m

m n m n m n
m m

m x x x

w x A x w x A x w x A x

W m m

   

   

  



  

where ( ) ( )W m m   is regarded as Hadamand product between 1m   
vectors ( )W m  and ( )m . By using the inner product action of vector 

( )W n  to ( )n , we can make 1m   dimension linear subspace as being

 span ( )m  of [ , ]C a b  turn to be another 1m   dimension linear  
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subspace  span ( )m  of [ , ]C a b . Before the transformation, we use 

some elements in the linear normed subspace  span ( )m  to approxi-
mate ( )f x ; after the transformation, we use some elements in 

 span ( )m  to approximate ( )f x .                                                        

8.6   Conclusions 

In this chapter, we an important problem: unified theory of classic  
mechanics and quantum mechanics. So-called unified theory here  
means almost every motion of a mass point in classic mechanics can  
be represented by the motions of an infinite sequence of particles in 
quantum mechanics, where limit operation plays an important role in  
the unified theory. Clearly this situation is just according with Bohr’s 
Correspondence Principle.  

 

 

Fig. 8.6.1. Unified frame of two kinds of mechanics 

 
It is worth noting that this kind of correspondence relation between 

classic mechanics and quantum mechanics cannot be expressed by  
the relationship between the mass point nature in classic mechanics  
and the particle nature in quantum mechanics because of Heisenberg’s  
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Uncertainty Principle (see Figure 8.6.1). As we all know, in classic  
mechanics, the motion of a mass point has no uncertainty so that we can 
use continuous functions to describe the movement locus of the mass 
point. However, in quantum mechanics, the motion of a particle has sure-
ly uncertainty so that we cannot use continuous functions to describe the 
movement locus of the particle. By now, we have known that the position 
and momentum of a particle are all random and they are related by 
Planck constant  , i.e.,  

2x p  


. 

Fortunately, we have pointed that the motion of a mass point in classic 
mechanics has also waviness in Section 8.3. The wave function of the 
motion of a mass point has surely no uncertainty. On the other hand,  
although the motion of a particle has surely uncertainty, the wave func-
tion of the particle must have no uncertainty. Thus, we can consider the 
relation between the wave function of a mass point in classic mechanics 
and the wave functions of some particles in quantum mechanics. As  
we discussed in Section 8.2, we have revealed the relation by means of 
Theorem 8.2.1. In other words, by using wave functions of both classic 
mechanics and quantum mechanics, classic mechanics and quantum  
mechanics are unified, which is the significance of our unified theory 
about the two kinds of mechanics. 

We need to emphasize my new and important and interesting conclu-
sion: The motion of a mass point has also so-called duality: wave- 
mass-point duality, which is very similar to the case of the motion of a 
particle in quantum mechanics and is an important support to our unified 
theory on classic mechanics and quantum mechanics. It is not difficult to 
understand that Theorem 8.2.1 should be the most important in physics.  

Another new and important and interesting conclusion of me is com-
ing from Theorem 8.4.1 which means that, for any a continuous function, 
there must be a sequence of probability spaces and a sequence of random 
vectors defined on the sequence of probability spaces, such that the  
sequence of conditional mathematical expectations of the sequence of 
random vectors uniformly converges to the continuous function. This 
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conclusion can establish a new bridge between real analysis and proba-
bility theory.  

Prigogine had ever pointed out his conclusion by many experiments: 
world is random not certain (see [20]). In fact, Theorem 8.4.1 just prove 
his idea, because, as we all know, a large part of physical phenomenon 
can be described by some kind of continuous functions, and based on 
Theorem 8.4.1, any one of these continuous functions must be the limit 
of the sequence of conditional mathematical expectations of a sequence 
of random vectors.  

In Section 8.5, approximation theory significance of theorem 8.2.1 is 
discussed in detail and its main conclusion is expressed by Theorem 
8.5.1. This undoubtedly gives a new kind of new method to function  
approximation theory. 

At last, we should state the fact that, these results in this chapter can 
easily extended to the cases of multivariate continuous functions based 
the methods in Chapter 5. 
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Chapter 9  

Unification of Riemann Integral and 

Lebesgue Integral 

9.1   Introduction 

Riemann integral and Lebasque integral are well-known and important 

contents in mathematical analysis and real analysis. Riemann integral is 

simpler than Lebasque integral considering that Lebasque integral needs 

measure theory. We all know that the integrable condition of Lebasque 

integral is much weaker than the integrable condition of Riemann inte-

gral; so Lebasque integral is major content in real analysis. And we also 

know that Lebasque integral is much harder to learn and teach for  

students and teachers. From the definitions and structures of Riemann 

integral and Lebasque integral, the two kinds of integrals look like quite 

different. In the paper, we show the fact that they are the same in essence, 

because their structures are the same based on function approximation 

theory and a kind of algebraic structure: linear normed space.  

First, the structure of Riemann integral is discussed, where the inte-

grand of a Riemann integral is regarded as the limit function of a  

sequence of functions; every function of the sequence of functions is just 

a linear combination of the base functions of a finite dimension linear 

space. Second, the structure of Lebesgue integral is discussed in the same 

way, where the integrand of a Lebesgue integral is also regarded as the 

limit function of a sequence of functions; every function of the sequence 

of functions is just a linear combination of the base functions of a finite 

dimension linear space. Third, the unification of Riemann integral and 

Lebasque integral is discussed under the meanings of function approxi-

mation theory and linear normed space, where the unification means that 

Riemann integral and Lebasque integral are all the limit of the integrals 
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of a sequence of functions and every function of the sequence of func-

tions is just a linear combination of the base functions of a finite dimen-

sion linear space. Then inspired by the wave-particle dualism from  

quantum mechanics, the wave-set dualism is firstly defined in the paper. 

So the relationship between Cantor sets and their characteristic functions 

is of wave-set dualism; the relationship between Fuzzy sets and their 

membership functions is of wave-set dualism, too. Based on such wave-

set dualism, the relationship between Riemann integral of continuous 

functions and fuzzy sets is introduced. 

9.2   On Riemann Integral 

We start to consider the Riemann integral of the unary function shown as 

the following: 

:[ , ] , ( )f a b x y f x→ =ℝ ֏ . 

Firstly, the closed interval [ , ]a b  is partitioned as the following: 

0 1:
n

a x x x b∆ = < < < =⋯ , 

Write  

[ )

[ ]
1

1

1

, , 1, 2, , 1,

, ;

, 1, 2, ,

i i i

n n n

i i i

x x i n

x x

x x x i n

−

−

−

∆ = = −

∆ =

∆ = − =

⋯

⋯

 

Such partition ∆  can be also denoted by { }1, 2, ,
i

i n∆ = ∆ = ⋯ . The set 

of all the partitions of [ , ]a b  is denoted by ( )[ , ]a bΞ .  

Second we write { }
1
max i

i n
x

≤ ≤
∆ = ∆ , which is called the norm of the 

partition ∆ . For convenience, this natural number n  is called the parti-

tion number of ∆ , denoted by par( )n = ∆ . Clearly it is true that  

0 n∆ →  → +∞ , 

but not vice versa. 
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Thirdly, we use [ , ]C a b∗
 to express the set of all almost everywhere 

continuous bounded functions on [ , ]a b . Based on the necessary and  

sufficient conditions of Riemann integrability of bounded functions,  

the function space [ , ]C a b∗
 is just the set of all Riemann integrable  

functions on [ , ]a b , i.e., 

[ , ] [ , ]C a b R a b∗ = . 

In [ , ]C a b∗
, we define additive operation and scalar multiplication as the 

following: 

( )( )

( )( )

: [ , ] [ , ] [ , ]

                      ( , ) ,

[ , ] ( )( ) ( ) ( ) ;

: [ , ] [ , ]

           ( , ) ,

[ , ] ( )( ) ( )

C a b C a b C a b

f g f g

x a b f g x f x g x

C a b C a b

a f a f

x a b a f x a f x

∗ ∗ ∗

∗ ∗

+ × →

+

∀ ∈ + = +

⋅ × →

⋅

∀ ∈ ⋅ = ⋅

֏

ℝ

֏

 

It is easy to verify that ( )[ , ], ,C a b∗ + ⋅  is a linear space. And in this space

[ , ]C a b∗
, we define a norm as the following: 

[ , ]

: [ , ] [0, ), sup ( )
x a b

C a b f f f x
∗

∈

⋅ → +∞ =֏  

Then we know that ( )[ , ], , ,C a b∗ + ⋅ ⋅  is a linear normed space. 

Fourthly, we arbitrarily take a partition as follows: 

{ } ( )1,2, , [ , ]
i

i n a b∆ = ∆ = ∈Ξ⋯ , 

by using ∆ , we define a group of functions on [ , ]a b  as follows: 

1,     ,
:[ , ] {0,1}, ( )

0,

1, 2, ,

i i

i

i

x
a b x x

x

i n

χ χ∆ ∆

∈ ∆
→ = 

∉ ∆

=

֏

⋯
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Apparently { }1,2, , [ , ]
i

i n C a bχ ∗
∆ = ⊂⋯ , and it is easy to prove that 

this group of functions is linearly independent in [ , ]C a b∗
. In fact, sup-

pose that there a group of constants , 1, 2, ,
i

a i n∈ =ℝ ⋯ , such that 

1 21 2 0
nn

a a aχ χ χ∆ ∆ ∆+ + + =⋯ , 

where 0 [ , ]C a b∗∈ , i.e. 0( ) 0x ≡ . For any [ , ]x a b∈ , there exists one 

and only one {1,2, , }i n∈ ⋯ , such that 
i

x ∈ ∆ ; therefore we have that 

1 21 20
n in i

a a a aχ χ χ χ∆ ∆ ∆ ∆= + + + =⋯
. 

Because ( ) 1
i

xχ∆ = , 0
i

a = . From this equation we can get the follow-

ing expression:  

( )( ){1,2, , } 0ii n a∀ ∈ =⋯ ; 

so the group of functions { }1,2, ,
i

i nχ∆ = ⋯  is linearly independent in 

the linear normed space [ , ]C a b∗
. Write the following symbol: 

{ }( )span 1,2, ,
i

G i nχ∆ ∆= = ⋯  

which means that it is a n  dimensional linear subspace of [ , ]C a b∗
 gen-

erated by { }1,2, ,
i

i nχ∆ = ⋯ , and { }1,2, ,
i

i nχ∆ = ⋯  is just the base of 

the space G∆ .  

Fifthly, for any a point , 1,2, ,
i i

i nξ ∈ ∆ = ⋯ , by using f  we can get 

n  constants as the following:  

( ) , 1, 2, ,if i nξ = ⋯ . 

By using of the group of functions { }1,2, ,
i

i nχ∆ = ⋯ , we can form a 

linear combination as the following: 
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1

,
i

n

i
i

g f G   


   

where it is defined as the following: 

   
1

[ , ] ( ) ( )
i

n

i
i

x a b g x f x  


     
 

  

Based on the definition of Riemann integral, if [ , ]f C a b , then we 
have the following expression: 

 

   

       

 

1

0 0 1

0 01 1

0 01 1

0 1

lim ( )d lim ( )d

lim ( )d lim ( )d

lim 1 lim 1

lim ( )d

i

i

i i
i

nb b

ia a
i

n nb x

i ia x
i i
n n

i i i i
i i
n b

i i a
i

g x x f x x

f x x f x x

f m f x

f x f x x

 

   

 





     

     

    

  

 

   

        

  

 

  

 

 

 

Sixthly, for every number 1,2,3,n   , we use  ( ) [ , ]n a b  to  
express the set of all partitions of [ , ]a b  with partition number being n .  

Thus   ( )
1

[ , ]n
n

a b



  forms a partition of  [ , ]a b , i.e., any two of 

the elements in   ( )
1

[ , ]n

n
a b




  are disjoint and the following condition 

must be satisfied:  

   ( )

1
[ , ] [ , ]n

n

a b a b




   . 

And then, a relation of equivalence “  ” defined on  [ , ]a b  as the 

following: 
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( )( ) ( ) ( )( )1 2 1 2 1 2, [ , ] par para b∀∆ ∆ ∈Ξ ∆ ∆ ⇔ ∆ = ∆∼  

So we can get the quotient set as the following: 

( ) ( ){ }[ , ]
[ ] [ , ]

a b
a b

Ξ
= ∆ ∆ ∈Ξ∼ , 

where [ ]∆  is the equivalence class to what ∆  belongs. It is not difficult 

to learn the expression as follows: 

( ) ( ){ }( )

1

[ , ]
[ , ]n

n

a b
a b

∞

=

Ξ
= Ξ∼ . 

Now for every 1, 2,3,n = ⋯ , in every equivalence class ( )( ) [ , ]n
a bΞ , 

we take one representation element: 

{ }( ) ( ) 1,2, , , 1,2,3,n n

i
i n n∆ = ∆ = =⋯ ⋯  

such that they satisfy the conditions: 
( )lim 0n

n→∞
∆ =  and the following: 

( ) ( )( ) ( ), n m
n m n m∀ ∈ >  ∆ < ∆ℕ . 

Therefore we can get a sequence of linear subspaces: 

{ }( )( ) ( )span 1, 2, , , 1,2,3,n n
i

G i n nχ
∆ ∆

= = =⋯ ⋯  

For any a point 
( ) ( ) , 1,2, ,n n

i i
i nξ ∈ ∆ = ⋯ , by using f , by using f  we 

get n  constants: ( )( ) , 1, 2, ,n

i
f i nξ = ⋯ . 

Then we can form a linear combination of { }( ) 1, 2, ,n
i

i nχ
∆

= ⋯  as the 

following: 

( )( ) ( ) ( )

( )

1

n n n
i

n
n

n i

i

g g f Gξ χ
∆ ∆∆

=

= ⋅ ∈≜ , 

where the function 
n

g  concretely as shown as follows: 
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    ( )
( )

1
[ , ] ( ) ( )n

i

n
n

n i
i

x a b g x f x 




     
 

  

Thus we can get a sequence of functions coming from the space 
[ , ]C a b  shown as   1n n

g 


. Considering the fact as the following: 

( ) 0n n     , 

we have the following result: 

 

 

 

 

   

( )

( )
( )

( )
( )

( )

( )( )( )
1

( )

( )

1

( )

0 1

( )

0 1

( )

0 1

( ) ( )

0 1

lim ( )d lim ( )d

lim ( )d

lim ( )d

lim ( )d

lim 1

n
i

n
n i

n
n i

n
i

nnn ii

n

nb b n
n ia an n i

nb n
ia

i

n bn
i a

i

n xn
i x

i

n
n n

i i
i

g x x f x x

f x x

f x x

f x x

f m

 

 

 

 





  

  

  

  

  

 

 

 

 

     

 



 

 

   

 

( )

( )

( ) ( )

0 1

( ) ( )

0 1

lim 1

lim ( )d

n

n

n
n n

i i
i

n bn n
i i a

i

f x

f x f x x





  

  

  

  





 

 

By now, we should turn to discuss the properties of the sequence of  
functions   1n n

g 


 defined on [ , ]a b . 

Proposition 9.2.1  If the function [ , ]f C a b , then the sequence of 

functions   1n n
g 


 is consistently convergent to the integrand f  on the 

integral interval [ , ]a b .  
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Proof.  For any 0  , because f  is continuous on [ , ]a b , f  must be 
uniformly continuous on [ , ]a b . So for any two points , [ , ]x x a b , 
there exists 0  , such that 

 ( )x x f x f x       . 

We can take a natural number ( )N N    , such that  

  ( )nn n N       . 

Considering the fact that there exists one and only one {1,2, , }i n  , 
such that ( )n

ix , ( ) ( )n n
i i  , and 

( ) ( ) ( )n n n
i ix x       , 

then when n N , we must have the following inequality: 

 ( )( ) ( ) ( )n
n ig x f x f f x     . 

This means that   1n n
g 


 is uniformly convergent to the integrand f  on 

the closed interval [ , ]a b .                                                                          

From the proposition, when [ , ]f C a b , it is easy to know the fact as 
the following: 

lim ( )d lim ( )d ( )d
b b b

n na a an n
g x x g x x f x x

 
    . 

Proposition 9.2.2  If [ , ]f C a b  and satisfies the following condition:  

    ( ){1,2, , } n
in i n A      , 

where A  is the set of all discontinuous points of f  in [ , ]a b , then the 

sequence of functions   1n n
g 


 is almost everywhere convergent to the 

integrand f  on the integral interval [ , ]a b . 

Proof.  First we all know the set [ , ]A a b  is a zero measure set, and f  
is almost everywhere continuous on the set [ , ]E a b A  . For any a 
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point 0x E∈ , and for any 0ε > , since f is continuous on E , there 

must exist 0δ > , such that 

( )( ) ( )( )0 0 0, ( )x E x x f x f xδ δ ε∀ ∈ − + − <∩ . 

Now we can take a natural number ( )0,N N xε += ∈ℕ , such that  

( )( )( )n
n n N δ+∀ ∈ >  ∆ <ℕ . 

Considering that there exists one and only one number {1,2, , }i n∈ ⋯ , 

such that 
( )

0

n

i
x ∈ ∆ , 

( ) ( )n n

i i
Eξ ∈ ∆ ∩ , and 

( ) ( ) ( )

0

n n n

i i
x xξ δ− ≤ ∆ ≤ ∆ < , 

Then when n N> , we surely can have the following inequality: 

( ) ( ) ( ) ( )( )

0 0 0

n

n i
g x f x f f xξ ε− = − < . 

Thus ( ) ( )0 0lim n
n

g x f x
→+∞

= . Since 0x E∈  is arbitrarily taken, we have 

the result: lim
n

n
g f

→+∞
= , a. e. [ , ]a b .                                                       □  

9.3   On Lebesgue Integral 

Let ( , , )X µR  be a measure space and take a measurable set E ∈R  

with the basic condition ( )Eµ < +∞ . Suppose :f E →ℝ  is a bounded 

measurable function. So we know that 

( ) ( ) ( )( ), ( ) ( , )c d c d f E c d∃ ∈ < ∧ ⊂ℝ . 

The set of all the partitions of [ , ]c d  is denoted by ( )[ , ]c dΞ . For any 

given partition ( )[ , ]c d∆ ∈Ξ , where 0 1:
n

c c c c d∆ = < < < =⋯ , and 

[ ) [ ]1 1, , 1, 2, , 1, ,k k k n n nc c k n c c− −∆ = = − ∆ =⋯ , 

i.e., { }1, 2, ,
k

k n∆ = ∆ = ⋯ . Write ( )1
1
max k k

k n
c c −

≤ ≤
∆ = −  and 

{ } ( )1( ) ,

1, 2, ,

k k kE x E f x f

k n

−= ∈ ∈ ∆ = ∆

= ⋯
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It is easy to know that { }1, 2, ,
k

E k n= ⋯  is regarded as a set partition 

of the measurable set E , which means that these ( )1

k kE f
−= ∆  are  

mutually disjoint and satisfies the following condition: 

( )1

1 1

n n

k k

k k

E f E
−

= =

= ∆ =∪ ∪ . 

Then we arbitrarily take a point , 1, 2, ,
k k

k nη ∈ ∆ = ⋯ , and we make a 

Lebesque sum as follows: 

( )
1

( )
n

k k

k

S Eη µ
=

∆ = . 

If there exists a real number s ∈ℝ , such that, for any 0ε > , there exists

0δ > , satisfying  

( )( ) ( )[ , ] ( )c d S sδ ε∀∆ ∈Ξ ∆ <  ∆ − < , 

i.e., 
0

lim ( )s S
∆ →

= ∆ , then the function f  is called to be integrable on the 

measurable set E  with respect to measure µ , and the real number s  is 

called integral  of f  on E  with respect to µ , denoted by 

d
E

s f µ=  . 

Especially, when the measure space ( , , )X µR  is just a Lebesgue meas-

ure space ( , , )mℝ L , the integral d
E

s f µ=   can be also denoted by 

the symbol d
E

s f m=  , or by the following form: 

( ) d
E

s L f x=  . 

When [ , ]E a b= , it can be denoted by ( ) d
b

a
s L f x=  . We often use the 

function space [ , ]L a b  to express the set of all Lebesgue integrabel func-

tions defined on [ , ]E a b= .  
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Similar to the discussion about Riemann integral mentioned above, for 

every natural number 1, 2,3,n = ⋯ , we use ( )( ) [ , ]n
c dΞ  to express the 

set of all partitions of [ , ]c d  with partition number being n . Thus 

( ){ }( )

1
[ , ]n

n
c d

∞

=
Ξ  forms a partition of ( )[ , ]c dΞ , i.e., any two of the  

elements in the sequence of sets ( ){ }( )

1
[ , ]n

n
c d

∞

=
Ξ  are disjoint and the 

following condition must be satisfied:  

( ) ( )( )

1

[ , ] [ , ]n

n

c d c d
∞

=

Ξ = Ξ∪ . 

And then, a relation of equivalence “ ∼ ” defined on ( )[ , ]c dΞ  as the 

following: 

( )( ) ( ) ( )( )1 2 1 2 1 2, [ , ] par parc d∀∆ ∆ ∈Ξ ∆ ∆ ⇔ ∆ = ∆∼  

So we can get the quotient set as the following: 

( ) ( ){ }[ , ]
[ ] [ , ]

c d
c d

Ξ
= ∆ ∆ ∈Ξ∼ , 

where [ ]∆  is the equivalence class to what ∆  belongs. It is not difficult 

to learn the fact as the following: 

( ) ( ){ }( )

1

[ , ]
[ , ]n

n

c d
c d

∞

=

Ξ
= Ξ∼ . 

Now for every natural number 1, 2,3,n = ⋯ , in every equivalence class 

as being ( )( ) [ , ]n
c dΞ , we take one representation element: 

{ }( ) ( ) 1, 2, , , 1, 2,3,n n

k
k n n∆ = ∆ = =⋯ ⋯  

such that they satisfy the limit expression: 
( )lim 0n

n→∞
∆ =  and the follow-

ing condition: 
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( ) ( )( ) ( ), n m
n m n m∀ ∈ >  ∆ < ∆ℕ . 

Considering that the following facts: 

( ) ){ }
( ) { }

( ) ( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ( ) ( )

1 1

[ , ] ( ) , ,

[ , ] ( ) , ,

1, 2,3, ; 1, 2, , 1

n n n n n

k k k k k

n n n n n

n n n n n

E E c f c x a b f x c c

E E c f c x a b f x c c

n k n

− −

− −

≤ < ∈ ∈ 

 ≤ ≤ ∈ ∈  

= = −

≜ ≜

≜ ≜

⋯ ⋯

 

The set as the following: 

{ } ( ){ }( ) 1 ( )1, 2, , = 1, 2, ,n n

k kE k n f k n
−= ∆ =⋯ ⋯

 

can just form a set partition of [ , ]a b , i.e., these 
( )n

k
E  are mutually  

disjoint and satisfy the condition:  

( )

1

[ , ]
n

n

k

k

E a b
=

=∪ . 

Clearly { }( ) 1, 2, ,n
kE

k nχ = ⋯  is a group of linearly independent ele-

ments in [ , ]L a b . Therefore we can get a sequence of linear subspaces: 

{ }( )( ) ( )span 1,2, , ,

1, 2,3,

n n
kE

F k n

n

χ
∆

= =

=

⋯

⋯

 

For any
( ) ( ) , 1,2, ,n n

k k
k nη ∈ ∆ = ⋯ , we can form a linear combination of 

the group of base functions { }( ) 1, 2, ,n
kE

k nχ = ⋯  as the following: 
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( )

( ) ( ) ( )

( )

( )

1

( )

1

,

[ , ] ( ) ( )

n n n
k

n
k

n
n

n k E
k

n
n

n k E
k

f f F

x a b f x x

η χ

η χ

∆ ∆
=

=

= ⋅ ∈

 
∀ ∈ = ⋅ 

 





≜

 

It is worth to understand the fact as the following expression: 

( )( )( ) ( )( )n n

k k
E fξ ξ η∃ ∈ = . 

Thus we can get a sequence of measurable functions { }
1n n

f
∞

=
 on [ , ]L a b . 

Seeing the fact as being: 
( ) 0n

n∆ → ⇔ → +∞ , we surely have the 

following result: 

( )

( )

( )
( )

( )
( )

( )( )( )

( )

( )

1

( )

0 1

( )

0 1

( )

0 1

( ) ( )

0

lim( ) ( )d lim( ) ( )d

lim ( ) ( )d

lim ( ) ( )d

lim ( ) ( )d

lim 1

n
k

n
n k

n
n k

nnn kk

n

n
b b

n

n k Ea an n
k

n
b

n

k Ea
k

n
b

n

k Ea
k

n
n

k EE
k

n n

k k

k

L f x x L x x

L x x

L x x

L x x

m E

η χ

η χ

η χ

η χ

η

→∞ →∞
=

∆ → =

∆ → =

∆ → =

∆ →

= ⋅

= ⋅

= ⋅

= ⋅

 = ⋅ ⋅ 

∑∫ ∫

∑∫

∑ ∫

∑ ∫

( )
( )

1

( ) ( )

0 1

lim ( ) ( )d
n

n

n
b

n n

k k
a

k

m E L f x xη

=

∆ → =

= ⋅ =

∑

∑ ∫

 

Proposition 9.3.1  If [ , ]f L a b∈ , then the sequence of functions as  

being { }
1n n

f
∞

=
 is in measure convergent to the integrand f  on [ , ]a b . 

Proof.  First it is not difficulat to know the fact that, for any 0σ > , there 

exists a natural number ( )N N σ += ∈ℕ , such that  
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( )( )( )n
n n N σ+∀ ∈ >  ∆ <ℕ . 

Then we have the following expression: 

 

( ) { }( ) ( )
n n

E f f x E f x f xσ σ− > ∈ − >≜  

{ }

{ }

( )

1

( ) ( )

1 1

( ) ( )

( )

n
n

k n

k

n n
n n

k k

k k

x E f x f x

x E f x

σ

η σ

=

= =

= ∈ − >

= ∈ − > = ∅ = ∅

∪

∪ ∪
 

So ( )( ) 0
n

m E f f σ− > = , which means the following limit  

expression: 

( )( )lim 0
n

n
m E f f σ

→+∞
− > = , 

i.e., the sequence of functions { }
1n n

f
∞

=
 is in measure convergent to the 

integrand f  on [ , ]a b .                                                                            □  

    Because the integrand f  is bounded on [ , ]a b , i.e., there exists 

0M > , such that 

( )( )[ , ] ( )x a b f x M∀ ∈ ≤ , 

The sequence of functions { }
1n n

f
∞

=
 must be a sequence of uniformly 

bounded measurable functions, which means that 

( ) ( )( )[ , ] ( )
n

n x a b f x M+∀ ∈ ∀ ∈ ≤ℕ . 

Based on Lebesgue dominated convergence theorem, we get the follow-

ing equation: 
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lim( ) ( )d ( ) lim ( )d ( ) ( )d
b b b

n n
a a an n

L f x x L f x x L f x x
→∞ →∞

= =∫ ∫ ∫ . 

Remark 9.3.1 From the proof of Proposition 9.2.2, we can learn that the 

sequence of functions { }
1n n

g
∞

=
 is continuous everywhere in the measura-

ble set [ , ]E a b A= −  which is the set of all continuous points of f .  

Let the limit function of the sequence of functions { }
1n n

g
∞

=
 on E  be 

lim
n

n
g g

→∞
= . We make g  extended to be a function on the whole meas-

urable set [ , ]a b  as the following: 

lim ( ), ,
( )

0,                 

n
n

g x x E
g x

x A

→∞
∈

= 
∈

 

Then we know the fact: g f= , a. e. [ , ]a b , which means that the func-

tion is Riemann integrabel, i.e. [ , ]g R a b∈ . Therefore, the Riemann in-

tegral ( ) ( )d
b

a
R g x x∫  must be meaningful. Naturally we have a question: 

whether the following integral equality is true: 

( ) ( ) ( ) ( )d
b b

a a
R g x dx R f x x=∫ ∫ . 

Our answer is positive. In fact, based on the well-known Lebesgue inte-

gral equality: 

( ) ( ) ( ) ( )d
b b

a a
L g x dx L f x x=∫ ∫ , 

By using the relationship between Lebesgue integral and Riemann inte-

gral, we immediately have the following equation: 

( ) ( )d ( ) ( )d ( ) ( )d ( ) ( )d
b b b b

a a a a
R g x x L g x x L f x x R f x x= = =∫ ∫ ∫ ∫  

Moreover, from the Riemann integral equality as the following: 
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( ) ( )d ( ) ( )d
b b

a a
R g x x R f x x=∫ ∫ , 

we can also find out the following result: 

lim( ) ( )d ( ) ( )d

( ) ( )d ( ) lim ( )d

b b

n
a an

b b

n
a a n

R g x x R f x x

R g x x R g x x

→∞

→∞

=

= =

∫ ∫

∫ ∫
 

This means that the limit operation of the sequence of functions { }
1n n

g
∞

=
 

and Riemann integral operation can be commutative without the stronger 

condition that { }
1n n

g
∞

=
 must be uniformly convergent.                           □  

Example 9.3.1  Now we use function approximation viewpoint
 

to  

inspect the integral of Dirichlet function which is well-known function: 

:[0,1] {0,1}

1,     [0,1] ,
( )

0, [0,1] c

D

x
x D x

x

→

∈
= 

∈

∩ℚ
֏

∩ℚ

 

We all know that [0,1]D R∉  but [0,1]D L∈ . It is easy to know that the 

fact that ( ) { }1 2{0,1} ,Ξ = ∆ ∆ , where 1 2{0}, {1}∆ = ∆ = . Considering 

the following expressions: 

( )

( )

1

1 1

1

2 2

[0,1] ,

[0,1]

c
E D

E D

−

−

= ∆ =

= ∆ =

∩ℚ

∩ℚ
 

clearly { }1 2,E E  forms a partition of [0,1]  and { }
1 2
,

E E
χ χ  is a group  

of linearly independent functions of [0,1]L . It can generate a two-

dimension linear subspace of [0,1]L , denoted by  

{ }( )
1 2

span ,
E E

H χ χ≜ . 

Only considering the integral, the linear combination coefficients of the 
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group of base function { }
1 2
,

E E
χ χ  has only one way for taking, i.e.,  

1 20, 1η η= = . 

Therefore we get an element of the linear subspace H  as the following: 

1 21 2E E
h η χ η χ= + . 

It is not difficult to know the fact that D h H= ∈ , and then we have the 

following expression: 

( )

( ) ( )

( ) ( )

1 2

1 2

1 1

[0,1] 0 0

1

1 2
0

1 1

1 2
0 0

1 1 2 2

1 1 2 2

( ) d ( ) ( )d ( ) ( )d

( ) ( ) ( ) d

( ) ( )d ( ) ( )d

1 1

0 1 1 0 0

E E

E E

L D m L D x x L h x x

L x x x

L x x L x x

m E m E

m E m E

η χ η χ

η χ η χ

η η

η η

= =

= +

= ⋅ + ⋅

= ⋅ ⋅ + ⋅ ⋅      

= ⋅ + ⋅ = ⋅ + ⋅ =

  



   

Furthermore, if we put ( ) ( )nn h h+∀ ∈ℕ ≜ , then we can get a sequence 

of functions of [0,1]L , i.e. { }
1n n

h
∞

=
. Clearly { }

1n n
h

∞

=
 can be uniformly 

convergent to the limit function h  on [0,1] . Thus, in form we can learn 

the following equation: 

lim( ) ( )d ( ) lim ( )d

( ) ( )d ( ) ( )d 0

b b

n n
a an n

b b

a a

L h x x L h x x

L h x x L D x x

→∞ →∞
=

= = =

∫ ∫

∫ ∫
 

This is our well-known result.                                                                 □  

9.4   Unification of Riemann Integral and Lebesgue Integral 

Considering the class of Riemann integrable functions [ , ]R a b , as we all 
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known [ , ] [ , ]R a b C a b∗= , for any [ , ]f R a b∈ , we can have a sequence 

of functions with discontinuity point of the first kind, which it has been 

denoted by { }
1n n

g
∞

=
, such that  

lim
n

n
g f

→+∞
= , a.e. [ , ]a b  

From the point of view of function approximation theory, every function 

n
g  is piecewise continuous polynomial which is formed by the group of 

base functions{ }( ) 1, 2, ,n
i

i nχ
∆

= ⋯ . In other words, 
n

g  is just a linear 

combination of { }( ) 1, 2, ,n
i

i nχ
∆

= ⋯  as follows: 

( ) ( ) ( )( ) ( ) ( )
1 2

( ) ( ) ( )

1 2n n n
n

n n n

n n
g f f fξ χ ξ χ ξ χ

∆∆ ∆
= ⋅ + ⋅ + + ⋅⋯ , 

where ( ) ( ) ( )( ) ( ) ( )

1 2, , ,n n n

n
f f fξ ξ ξ⋯  are just the linear combination 

coefficients.  

The linear space generated by { }( ) 1, 2, ,n
i

i nχ
∆

= ⋯  as the following: 

{ }( )( ) ( )span 1, 2, ,n n
i

G i nχ
∆ ∆

= = ⋯  

is just a n  dimension linear subspace of [ , ]R a b , which is closed for 

n
g . In other words, we can use an element 

n
g  in the finite dimension 

linear space ( )nG
∆

 to approximate the element f  in infinite linear space 

in [ , ]R a b . If we write ( )lim n
n

G G
∆→+∞

= , then we can have the following  

expression: 

( )( )dim( ) dim lim n
n

G G
∆→+∞

= = +∞ . 

This means that it is difficult that 
n

g , as an element ( )nG
∆

, accurately 

approximates f  for any finite natural number n +∈ℕ , where +ℕ  is the 
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set of all natural numbers. Fortunately, ( )lim n

n
G G


 , as a linear sub-

space of [ , ]R a b , is of countable base function set.  
Moreover, although lim nn

g f


 , a.e. [ , ]a b , this does not make it 

true that the limit operation and integral operation are exchangeable, i.e., 

lim( ) ( )d ( ) lim ( )d
b b

n na an n
R g x x R g x x

 
  . 

When [ , ]f C a b , i.e., f  is a continuous function, lim nn
g f


  must 

be uniformly convergent in [ , ]a b ; thus we have the following result: 

lim( ) ( )d ( ) lim ( )d ( ) ( )d
b b b

n na a an n
R g x x R g x x R f x x

 
    . 

On the class of Lebesgue integrable functions [ , ]L a b , for any a Lebes-
gue integrable function [ , ]f L a b , we can get a sequence of bounded 

measurable functions   1n n
f 


, such that 

n

nf f


 . From the point of 

view of function approximation theory, every nf  is a generalized piece-
wise zero degree polynomial, and the group of base functions of structur-
ing nf  is just the group of base functions: 

 ( ) 1, 2, ,n
kE

k n   ; 

and nf  is the linear combination of  ( ) 1, 2, ,n
kE

k n    as the  

following: 

( ) ( ) ( )
1 2

( ) ( ) ( )
1 2n n n

n

n n n
n n EE E

f             , 

where these real numbers ( ) ( ) ( )
1 2, , ,n n n

n    are regarded as the combi-
nation coefficients.  
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As the same as the situation about Riemann integral, the linear space 

generated by  ( ) 1, 2, ,n
iE

i n    as the following: 

  ( ) ( )span 1,2, ,n n
iE

F i n


    

is just a n  dimension linear subspace of [ , ]L a b , which is closed for 

nf . In other words, we can use an element nf  in finite dimension linear 
space ( )nF


 to approximate the element f  in infinite linear space in the 

function space [ , ]L a b . If we write ( )lim n
n

F F


 , then we have the  

following limit expression: 

 ( )dim( ) dim lim n
n

F F


   . 

This means that ( )lim n
n

F F


  of countable base function set. 

Moreover, considering the fact that 
n

nf f


 , since the integrand f  

is bounded,   1n n
f 


 is a sequence of uniformly. Based on Lebesgue 

dominated convergence theorem, we have the following result: 

lim( ) ( )d ( ) lim ( )d ( ) ( )d
b b b

n na a an n
L f x x L f x x L f x x

 
    . 

9.5   Riemann Integral of Continuous Functions 

For any continuous function [ , ]f C a b , we have known the fact that  

   ( )

1
[ , ] [ , ]n

n

a b a b




   . 

For every natural number 1,2,3,n   , we take a  representative ele-
ment in every equivalence class  ( ) [ , ]n a b  as the following: 
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{ }( ) ( ) 1, 2, , , 1, 2,3,n n

k
k n n∆ = ∆ = =⋯ ⋯  

such that they satisfy the condition: 
( )lim 0n

n→∞
∆ =  and 

( ) ( )( ) ( ), n m
n m n m∀ ∈ >  ∆ < ∆ℕ . 

Seeing that 
( ) ( ) ( ) ( )

0 1:n n n n

n
a x x x∆ = < < <⋯ , we can make the base func-

tions that we need as follows, refer to Figure 9.5.1. 

( ) ( ) )

( ) ( ) )
( ) ( ) )

( )
0

( )

( ) ( ) ( ) ( ) ( )

1 0 1 0 1

( ) ( ) ( ) ( ) ( )

1 1 1

( ) ( ) ( ) ( ) ( )

1 1 1

, , ;
( )

0 ,                                   otherwise

,   , ;

( ) ,   , ;

0

n

n
i

n n n n n

A

n n n n n

i i i i i

n n n n n

i i i i iA

x x x x x x x
x

x x x x x x x

x x x x x x x x

µ

µ

− − −

+ + +

 − − ∈ = 


− − ∈ 

= − − ∈ 

,

，　　  

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

1 1 1

   otherwise;

               1,2, , 1,

,   , ;
( )

0,                   otherwise,
n

n

n n n n n

n n n n n

A

i n

x x x x x x x
xµ − − −








= −

  − − ∈  = 


⋯

        

 

 

 

Fig. 9.5.1.  Continuous base functions 
( )

( 0,1, , )
n

i
A i n= ⋯  
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It is easy to verify that the set { }( ) ( ) ( )
0 1

, , ,n n n
nAA A

µ µ µ⋯  is a group of  

linearly independent functions in the function space [ , ]C a b . Then it  

can generate a 1n +  dimension linear subspace of [ , ]C a b  shown as the 

following: 

{ }( )( ) ( ) ( ) ( )
0 1

span , , ,n n n n
nAA A

H µ µ µ
∆
≜ ⋯ . 

So we can also have got a sequence of linear subspaces denoted by the 

sequence of linear subspaces{ }( )
1

n
n

H
∞

∆ =
, where the set as follows: 

{ }( ) ( ) ( )
0 1

, , ,n n n
nAA A

µ µ µ⋯  

is just the group of base elements of ( )nH
∆

. By using f  we can make 

1n +  constants as the following: 

( ) ( ) ( )( ) ( ) ( )

0 1, , ,n n n

n
f x f x f x⋯ . 

By using them, we can get a linear combination of the element coming 

from the set { }( ) ( ) ( )
0 1

, , ,n n n
nAA A

µ µ µ⋯  as follows: 

( ) ( )

( )

0

( ) ( )n
i

n
n

n i A
i

f x f x xµ
=

≜ . 

This expression means that we have got a sequence of continuous func-

tions as { }
1

( )
n n

f x
∞

=
.  

It is not difficult to verify the fact as the following:  

( ) ( ) ( )( )( ) ( ){0,1, , } n n

n i i
i n f x f x∀ ∈ =⋯ , 

and then we know that ( )
n

f x  is a piecewise linear interpolation function 

about the continuous function f , where 
( ) ( ) ( )

0 1, , ,n n n

n
x x x⋯  are just its 
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nodes of interpolation.  

It is noticeable that there is an interesting fact:  

( ) ( )( )( ){0,1, , } [ , ]n

i
i n A a b∀ ∈ ∈⋯ F , 

where ( )[ , ]a bF  means the set of all fuzzy sets defined on [ , ]a b , i.e., 

every 
( )n

i
A  is a fuzzy set defined on the universe [ , ]a b , and ( ) ( )n

iA
xµ  is 

just the membership function of 
( )n

i
A . Moreover, if we define the follow-

ing fuzzy sets: 

( ){ }( ) ( ) , 0,1, , ,n n

i i
B f x i n=≜ ⋯  

where every 
( )n

i
B  is actually a single element set, then we can get a 

group of fuzzy inference rules: 

( ) ( )

0 0

( ) ( )

1 1

( ) ( )

If is then is

If is then is

If is then is

n n

n n

n n

n n

x A y B

x A y B

x A y B









⋯⋯
 

Now we return to consider the integral of continuous functions. For 

every number { }1, 2, ,i n∈ ⋯ , on every closed interval 
( ) ( )

1 ,n n

i i
x x−
   , we 

define a linear function 
( ) ( )n

i
l x , such that they must satisfy the following 

condition:  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 1 , ,

1,2,

n n n n n n

i i i i i il x f x l x f x

i n

− −= =

= ⋯
 

And then these linear function 
( ) ( ), 1, 2,n

i
l x i n= ⋯  are extended as the 

following linear functions defined on [ , ]a b : 
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( ) ( ) ( )

1( )

( ) ( )

1

( ), , ,
( )

0,            [ , ] ,

1,2,

n n n

i i i
n

i
n n

i i

l x x x x
L x

x a b x x

i n

−

−

  ∈  
= 

 ∈ −  

= ⋯

 

It is easy to learn the following fact: 

( )
( ) ( )

( )
( ) ( )

1( ) ( ) ( )

1 1( ) ( )

1

( )

n n

i in n n

i i in n

i i

f x f x
L x f x x x

x x

−

− −

−

−
= + −

−
, 

where 1,2,i n= ⋯ , and  

( )

1

( ) ( )
n

n

n i

i

f x L x
=

= . 

Proposition 9.5.1 If [ , ]f C a b∈ , then the sequence of continuous func-

tions { }
1n n

f
∞

=
 is uniformly convergent to f  on [ , ]a b .  

Proof.  Because [ , ]f C a b∈ , f  is uniformly continuous on [ , ]a b . So 

for any 0ε > , and for any two points , [ , ]x x a b′∈ , such that 

( ) ( )( )0 ( )x x f x f xδ δ ε′ ′∃ > − <  − < . 

Now we can take a natural number ( )N N ε += ∈ℕ , such that  

( )( )( )n
n n N δ+∀ ∈ >  ∆ <ℕ . 

Since [ , ]x a b∈ , there must be one and only one {1,2, , }i n∈ ⋯ , such 

that 
( )n

i
x ∈ ∆ ; thus we have the following result: 
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( )
( ) ( )

( )

( )
( )

( ) ( )
( )

( )( )( ) ( ) ( )( )

( )

( ) ( )

1( ) ( )

1 1( ) ( )

1

( ) ( ) ( )

1 1( ) ( ) ( )

1 1( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ( ) ( )

1 1 1

( ) ( ) ( ) ( )

( )

( )

( )

n

n i

n n

i in n

i in n

i i

n n n

i i in n n

i i in n n n

i i i i

n n n n n

i i i i i

f x f x f x L x

f x f x
f x f x x x

x x

f x f x f x f x
x x x x

x x x x

f x f x x x f x f x x x

−

− −

−

− −

− −

− −

− − −

− = −

−
= − − −

−

− −
= − − −

− −

− − + − −
=

( )

( )( )( ) ( )( )( )

( )

1

( ) ( )

1

( ) ( ) ( ) ( )

1 1 1

( ) ( )

1

( ) ( )

n

i

n n

i i

n n n n

i i i i

n n

i i

x x

f x f x x x f x f x x x

x x

−

−

− − −

−

−

− − + − −
=

−

 

( )( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 1 1

( ) ( )

1

( ) ( )

1

( ) ( )

1

( ) ( )n n n n

i i i i

n n

i i

n n

i i

n n

i i

f x f x x x f x f x x x

x x

x x x x

x x
ε ε

− − −

−

−

−

− − + − −
≤

−

− + −
< =

−

 

Now that [ , ]x a b∈  is arbitrarily taken in [ , ]a b  by us, so the sequence 

of continuous functions { }
1n n

f
∞

=
 is uniformly convergent to f  on the 

integral interval [ , ]a b .                                                                            □  

We now take the following n  points:  

( ) ( )( ) ( )

1( )
+

, 1, 2, ,
2

n n

i in

i

f x f x
i nη

−
=≜ ⋯ , 

and by them we consider the integral of the continuous function f  as the 

following: 
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1 1( ) ( )
1 1

( )
1

( ) lim ( ) lim ( )

lim ( ) lim ( )
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n
i

n
i

n
i

b b b

n na a an n
n nb xn n

i ia xn ni i

n nn x i in n
i in nxn i i i

n
i

n

f x dx f x dx f x dx

L x dx L x dx

f x f x
f x x x dx

x x

f x f x





 

  


   





 

 

 
    

  
  



   
     

 

( )
( ) ( )

1
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1 ( )

1
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1

2
+
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2

= lim 1

nn
i n n

i i
i

n nn
i i n

in i
n

n n
i in i

x x

f x f x
m
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Furthermore, we write the following n  real numbers as some weights: 

( )
( )

( )

1

, 1, 2, ,
n

in
i n

n
j

j

w i n





 


 , 

 
and clearly they meet the following condition: 

  ( ) ( )

1
{1, 2, , } [0,1] 1

n
n n

i i
i

i n w w


          
 . 

This means that  ( ) ( ) ( )
1 2, , , , 1, 2,3,n n n

nw w w n    form a sequence of 

weight vectors with normalization; and then we have the following  
expression: 



  Unification of Riemann Integral and Lebesgue Integral 443 
 

 

   

   

( ) ( )

1

( ) ( ) ( )

1

( ) ( ) ( ) ( )

1 1

( ) lim 1

lim sgn

lim sgn

nb n n
i ia n i

n
n n n

i i in i

n n
n n n n

i i j in i j

f x dx m

m

w m



 

 

 

 

  

    

    

  
        





 

 

where    ( ) ( ) ( )

1
sgn , 1,2, ,

n
n n n

i j i
j

m i n 


 
    
 
   is a group of di-

rected areas, which they have the common height ( )

1

n
n

j
j



 , but different 

widths  ( )n
im  ; and the integral ( )d

b

a
f x x is just the limit of the 

weighted summations of the group of directed areas. 

Remark 9.5.1  When every partition ( ) ( ) ( ) ( )
0 1:n n n n

na x x x      is 
a equidistant partition, i.e., 

( ) ( ) ( )
1= , 1,2, ,n n n

i i i
b ax x i n

n


     , 

We also have the following equation: 
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( ) ( )
1 ( ) ( )

1
1

1

1

+
( )d lim

2
1( ) + ( )

= lim
2
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lim ( ) ( ) lim ( )
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n nnb i i n n
i ia n i

n

n i

n

n i

n n i

f x f x
f x x x x

i if a b a f a b a
b a n n

n
b a f a f b if a b a

n n
b a b a if a f b f a b a
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1
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1lim ( ) ( )

n

n

n i
n

n i

b a if a b a
n n

if a b a b a
n n



 

 

      

      







 

where the summation 
1

1 ( ) ( )
n

i

if a b a b a
n n

    
 

  is a mean value.  

However, what is the meaning of this mean value? As a matter of fact, 
we make a transformation as the following: 

1

1

1( )d lim ( ) ( )

1lim sgn ( ) ( ) ( ),

nb

a n i

n

n i

if x x f a b a b a
n n

i if a b a f a b a b a
n n n

 

 

      

                 




 

where every sgn ( ) ( ) ( )i if a b a f a b a b a
n n

                
 is a di-

rected area. These directed areas have a common width b a , but differ-

ent heights ( )if a b a
n

   
 

. Therefore the integral ( )d
b

a
f x x  is just 

the limit of the mean values of the group of directed areas. 
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At last, we make a further transformation on the integral ( )d
b

a
f x x  as 

the following: 

1
( )d lim sgn ( ) ( )

nb

a n i

i i b af x x f a b a f a b a
n n n 

                     

Then every ( )i b af a b a
n n

    
 

 is a directed area, they have 

common width 
b a

n


, but different heights ( )if a b a
n

   
 

, and the 

integral ( )d
b

a
f x x  is just the limit of the algebraic summations of the 

group of directed areas.                                                                              

9.6   Conclusions 

This chapter has discussed unification of Riemann integral and Lebesgue 
integral. The main results are as follows. 

On Riemann integral, we have shown that function approximation is 
main tool where the group of base functions as the following: 

 1,2, , [ , ]
i

i n R a b    

plays an important role in the integral. As we all know, every i  is an 
interval which comes from a partition on X  as follows: 

0 1: na x x x b      . 

It is worth noting the following the sequence of sets: 

  ( ) ( )span 1,2, ,n n
i

G i n
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which is the sequence of linear subspaces in Riemann integrabel space 

[ , ]R a b , plays the role of its framework. This means that linear algebra 

plays an important role in Riemann integral. 

On Lebesgue integral, we also have shown that function approxima-

tion is main tool where the group of base functions as the following: 

{ }( ) 1, 2, , [ , ]n
kE

k n L a bχ = ⊂⋯  

plays an important role in the integral. As we all know, every 
( )n

k
E  may 

not be an interval but should be measurable set which comes from the 

following sets: 

{ } ( )( ) ( ) 1 ( )( ) ,

1, 2, ,

n n n

k k k
E x E f x f

k n

−= ∈ ∈ ∆ = ∆

= ⋯
 

and { }( )

1

n
n

k k =
∆ forms a partition on Y  not on X .  

In the same way, the sequence of sets as the following: 

{ }( )( ) ( )span 1, 2, ,n n
iE

F i nχ
∆

= = ⋯ , 

which is the sequence of linear subspaces in [ , ]L a b , also plays the role 

of its framework. This also means that linear algebra plays an important 

role in Lebesgue integral. 

Thus, we can give the conclusion: Riemann integral and Lebesgue in-

tegral are unified under linear algebra and function approximation theory. 
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Chapter 10  

Fuzzy Systems with a Kind of 
Self-adaption 

10.1   Fuzzy Inference Relations with Self-adaption 

Again we consider a kind of static uncertain systems with one input one 
output shown as in Figure 10.1.1, which it’s the relation between input 
and output can be described by (10.1.1) as follows, where the input vari-
able x  takes its values in the universe X  and the output variable y  
takes its values in the universe Y . 

: , ( )s X Y x y s x                                 (10.1.1) 

 

 

Fig. 10.1.1.  Static uncertain system with one input one output 

 

Since the system S  has been supposed to be an uncertain system, 
based on the methods discussed in some foregoing chapters, we have no 
difficulty to get a group of fuzzy inference rules as the following: 

If      is      then      is   
0,1, ,

i ix A y B
i n


 

                 (10.1.2) 

where ( )iA X  and  ( ),iB Y  0,1, ,i n  .  
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As we all know, the fuzzy inference relation R  is fixed in CRI meth-
od. In order to enhance the ability of describing uncertain systems, we try 
to make the fuzzy inference relation R  be having a kind of self-adaption 
which means that R  can change with changing of the input variable of 
the system. So we suggest a kind of fuzzy inference with self-adaption.  

Suppose input universe [ , ]X a b  and output universe [ , ]Y c d , 
and the IOD as the following: 

  IOD , 0,1, ,i ix y X Y i n     

should meet the following conditions: 

0 1

0 1 ,

n

n

k k k

a x x x b
c y y y d
    

    




 

where ( )ik i , and   is a 1n   permutation as follows: 

0 1

0 1

n

n
k k k


 

  
 




. 

Thus we can get a group of fuzzy inference rules as the following:  

0 0

1 1

If      is      then      is   
                    or
If      is      then      is   
                    or
                   
                    or
If      is      then      is  

n

k k

k k

k

x A y B

x A y B

x A y



 
nkB













                  (10.1.3) 

In this group of rules, the inference antecedents and inference conse-
quents are respectively as the following: 

( ), ( ), 0,1, ,
i ik kA X B Y i n      
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And they can form a group of local fuzzy inference relations as follows: 

, 0,1, ,
ikR i n  . 

Then by using these , 0,1, ,
ikR i n  , we can get the whole fuzzy infer-

ence relation ( )R X Y  . Now we take this operation: iw    , 
and we have the following expressions: 

 

  

0 0

0

0

( , ) ( , ) ( , )

{0,1, , } 0 , 1

i i i

i i

nn

k k ki i

n

k k
i

n

i i
i

R R w R

x y X Y R x y w R x y

i n w w

 





   

      

 


    








       (10.1.4) 

where the weight vector  0 1, , , nW w w w   will be confirmed. It is 

worth noting that the weight vector  0 1, , , nW w w w   is not con-

firmed with off-line but on-line on real time. In other words, the weight 
vector  0 1, , , nW w w w   is regarded as 1n   parameters which are 

adjusting depending on input information on-line on real time. For doing 

this, we rewrite 
0

i i

n

k k
i

R w R


   as the following expressions: 

 

  

0 1
0

0

( ) , , ,

[0,1]

{0,1, , } 0 , 1

i i

n

n k k
i

n

n

i i
i

R W R w w w w R

W

i n w w






  

 

   










                (10.1.5) 

Is it easy to understand that the weight vector  0 1, , , nW w w w   is a 

variable weight vector in essence.  
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How to design a variable weight vector is a very important problem. 
We can regard  0 1, , , nW w w w   as a mapping as follows: 

 
 

0 1

0 1

, , , : ( ) [0,1]  
( ) ( ), ( ), , ( )

n
n

n

W w w w X

A W A w A w A w A

  


 



 


              (10.1.6) 

where we have the following requirements: 

  
0

{0,1, , } ( ) 0 , ( ) 1
n

i i
i

i n w A w A


    . 

Clearly how to define the mapping  0 1, , , : ( ) n
nW w w w X    

is equivalent to the problem how to define the following 1n   functions: 

  

0

: ( ) [0,1], ( )
0,1, ,

{0,1, , } ( ) 0

( ) 1

i i

i

n

i
i

w X A w A
i n

i n w A

w A


 
 

   












              (10.1.7) 

We consider two methods to solve about problem as follows. 

Method 1. Function Space Method.  

Suppose ( ) ( )X C X . Then ( )X  can be regarded as a sub-

space of the linear normed space  ( ),C X  , where the norm   is  

defined as the following: 

  ( ( )) max ( )f C X f f x x X   . 

Because of   ( ) 1A X A   , we give the following definition: 
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0

: ( ) [0,1]
1

( )
1

0,1, ,

i

i
i n

i
i

w X
A A

A w A
A A

i n




 

 




 





                   (10.1.8) 

It is easy to verify that  0 1, , , : ( ) [0,1]n
nW w w w X    defined 

by (10.1.8) must satisfy (10.1.7).We can clearly learn that (10.1.8) means 
the fact: the more the distance between the input fuzzy set A  and the 
inference antecedent fuzzy set iA , the bigger the weight corresponding to

iA ; of course this is reasonable.  

When ( ) ( )X B X , where ( )B X  is the set of all bounded func-
tions defined on the universe X , ( )X  is regarded as a subspace of 

the linear normed space  ( ),B X  , where the norm   should be  

defined as the following: 

    ( ) sup ( )f B X f f x x X   . 

This time, Expression (10.1.8) is also effective. 

Method 2. Close Degree Method. 

We first give a definition as follows. 

Definition 10.1.1 The mapping : ( ) ( ) [0,1]U U     is called  
a close degree between two fuzzy sets, if it satisfies the following  
conditions:  

1) ( , ) 1A A  ; 

2) ( , ) ( , )A B B A  ; 

3) ( , ) 0U   ; 

4) ( , ) ( , ) ( , )A B C A C A B B C       , 
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where U  is a universe chosen by us in advance.                                      

Example 10.1.1  When the universe U   , we clearly know the fact 
that ( ) ( )U B U ; so ( )U  is a linear normed subspace of the func-

tion space  ( ),B U  , denoted by  ( ),U  , and   has already de-

fined in front. By means of the norm  , we give the following mapping: 

: ( ) ( ) [0,1]
( , ) ( , ) 1

U U
A B A B A B



 

  
 

                      (10.1.9) 

It is easy to verify that the mapping   from (10.1.9) meets the condi-
tions in Definition 10.1.1, which means it is a kind of close degree.        

Example 10.1.2  When [ , ]U a b   , we let  

   [ , ] [ , ] [ , ], 1p
pF a b a b L a b p    . 

Then  [ , ]pF a b  must become a subspace of the linear normed space 

 [ , ],pL a b  , as being denoted as  ([ , ]),pF a b  , where the norm   

is defined as the following expression: 

   
1

[ , ] ( ) d
b ppp

a
A L a b A A u u

 
    

 
 . 

By means of the norm  , we make a mapping as follows: 

   : [ , ] [ , ] [0,1]
1( , ) ( , ) 1

1              1 ( ) ( ) d .

p p

p

b p

a

F a b F a b

A B A B A B
b a

A u B u u
b a





 

 


  
 

              (10.1.10) 

It is not difficult to verify that the mapping   from (10.1.10) meets the 
conditions in Definition 10.1.1, which means it is a kind of close degree. 
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Especially, when 1p  , above expression turns to be the following 
form: 

1( , ) 1 ( ) ( ) d
b

a
A B A u B u u

b a
   

  .              (10.1.11) 

While 2p  , above expression turns to be the following form: 

 21( , ) 1 ( ) ( ) d
b

a
A B A u B u u

b a
   

  .          (10.1.12) 

  
After we got the tool of the close degree, we can make a kind of varia-

ble weight similar to Expression (10.1.8) as follows: 

 

 
0

: ( ) [0,1]
,

( ) ,
,

0,1, ,

i

i
i n

i
i

w X
A A

A w A
A A

i n











 





                 (10.1.13) 

It is easy to verify that such weight vector from Expression (10.1.13): 

 0 1, , , : ( ) [0,1]n
nW w w w X    

can also satisfy the expression (10.1.7).  

In order to show that the weight vector  0 1, , , nW w w w   depends 
on the fuzzification of the input datum ( )x X A X   , where A  
is the fuzzification of x , we denote the weight vector 

 0 1, , , nW w w w   to be the following: 

 0 1( ) ( ), ( ), , ( )nW A w A w A w A   

or simply denoted by ( )W A . 
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Definition 10.1.2  The following fuzzy inference relation formed by the 
weight vector  0 1( ) ( ), ( ), , ( )nW A w A w A w A  :  

0

0

( ( )) ( ) ,

( ( ))( , ) ( ) ( , )

i i

i i

n

k k
i

n

k k
i

R W A w A R

R W A u v w A R u v





 







      (10.1.14) 

is called fuzzy inference relation with self-adaption, where ( )A X  
and ( , )u v X Y  and 

  
0

{0,1, , } ( ) 0 , ( ) 1
n

i i
i

i n w A w A


    .                   

10.2   Fuzzy Systems with Self-adaption 

Generally speaking, for an uncertain system S , it is difficult to build an 
accurate model for S  only by the data set as the following: 

  IOD , 0,1, ,i ix y X Y i n     , 

where, by the accurate model we can get the relation between the input 
and the output as the following: 

: , ( )s X Y x y s x   . 

However, we surely can use the data set IOD  to make an approximation 
the relation between the input and the output as the following: 

: , ( )n ns X Y x y s x   ,                          (10.2.1) 

such that the function :ns X Y  that we will make can approximate 

our goal function :s X Y , which means that ns s   , where 
0   is a kind of error number given by us in advance.  
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Based on the data set  0 0,1, ,iX x i n   on the universe X , we 

can get a group of fuzzy sets  1 0,1, ,iA i n  ; in the same way, 

by using the data set  0 0,1, ,iY y i n   on  the universe Y , we 

also get a group of fuzzy sets  1 0,1, ,
ikB i n  , where the fuzzy 

sets ,i iA B  can be taken triangle wave membership functions.  

By noting 1( )i i   , we have 1 ( )i
k i
   ; so 

1 ( )i
i kB B


 . Thus, 

every iB  has been defined so that  1 0,1, ,iB i n   . 

By means of IOD , we can get a group of fuzzy inference rules as the 
following: 

If      is      then      is   
0,1, ,

i ix A y B
i n


 

                   (10.2.2) 

Where ( )iA X  and ( ),iB Y 0,1, ,i n  . Every fuzzy infer-
ence rule can form a local fuzzy inference relation as follows: 

 ( , ) ( ), ( ) , ( , ) ,
0,1, ,

iR x y A x B y x y X Y
i n

  






 

where :[0,1] [0,1] [0,1]    is a kind of fuzzy implication operator. 

Then let 
0

n

i
i

R R


 ; we get the whole fuzzy inference relation, so that 

we get a mapping as follows: 

      
: ( ) ( ), ( ) ,

( ) ( ) ( ) ( ) ( , )
x X

T X Y A B T A A R

y Y B y T A y A x R x y


 

    

  



 
 

We can use two steps to gain the following function  

: , ( )n ns X Y x y s x   
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i.e., first, we will make the set to set mapping : ( ) ( )T X Y   be-
come a point to set mapping; second, we are going to form a point to 
point mapping :ns X Y . 

Step 1. Make a point to set mapping from : ( ) ( )T X Y  .  

In fact, we let 

 1 1: ( ), ( ) { }s X Y x s x T x                 (10.2.3) 

So for any a point x X  and any a point y Y , we can get the follow-
ing calculating form: 

    
 

 

1

{ }

0

( ) ( ) { } ( )

{ }( ) ( , )

( ) ( , )

( , ) ( ) ( )

X

xX

n

i ii

s x y s x y

x R y

R y

R x y A x B y





 

  








  

    

   

                       (10.2.4) 

Because of  1( ) ( ) ( )x X s x Y   , we can let  

  1( ) ( )x X B x s x    , 

where   is a variable taking its value in X , and the membership func-
tion of ( )B x   is as the following: 

   

 

1

0

( | ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) , ,
n

i ii

B y x B x y s x y

R x y A x B y x X y Y

 



  

     


            (10.2.5) 

Step 2. Try to make the fuzzy set 1( ) ( ) ( )B x s x Y     turn to 

be a point  ( ) ( )
x

y y y x





   in the universe Y  corresponding the 

input point x  .  
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In a matter of fact, we have known the important method coming from 
the center of mass of the rigid body in physics. If the following condi-
tions are satisfied: 

( | ) d , 0 ( | )d
Y Y

yB y x y B y x y          

The we can define the  ( ) ( )
x

y y y x





   as the following: 

 
( | )d

( ) ( )
( | )d

Y
x

Y

yB y x y
y y y x

B y x y







  





             (10.2.6) 

This means that we have got the mapping :ns X Y  as the following: 

:

( | )d
( ) ( )

( | )d

n

Y
n

Y

s X Y

yB y x y
x s x y x

B y x y














 
             (10.2.7) 

And then we put ( | )B y x   into above expression and gain the fol-
lowing equation: 

 
 
0

0

( | )d
( )

( | )d

( ) ( ) ( ) d

( ) ( ) ( ) d

Y
n

Y

n
i i i iY

n
i i i iY

yB y x y
s x

B y x y

y w A A x B y y

w A A x B y y














    
    







             (10.2.8) 

Remark 10.2.1  Since we know the following fact: 

  ( , ) ( | ) ( , )x y X Y B y x R x y     , 
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Expression (10.2.7) can be written the following simpler form: 

 
( , )d

( )
( , )d

Y
n

Y

yR x y y
x X s x

R x y y

 
   

  




                     (10.2.9) 

Because 
0

n

i
i

R R


 , actually R  is formed from ( 0,1, , )
ikR i n   by 

means of the operation “ ”. And except using “ ”, we have many 
methods to form the whole fuzzy inference relation R ; so Expression 
(10.2.9) is of more broad meaning.                                                            

The realizing process from Data to Formulas is called the method of 
fuzzy inference with self-adaptation. And the input output function  

: , ( )n ns X Y y s x   

expressed by (10.2.9) is called a kind of fuzzy systems with self-
adaptation. 

By now, we have got the input output function :ns X Y  by the  
data set IOD , which is regarded as a kind of approximation to our goal 
function :s X Y . In order to simplify the calculating for the input 
output function :ns X Y , we should give a kind of calculating meth-
od. In fact, let 

1

1

0

,  0,1, , 1,
i i i

i

n

k k k

n

k
i

k

y y y i n

y
d cy

n n







    




  




 

Clearly 
1( )i

i ky y


   , and then ( 0,1, , )iy i n    have their meaning. 

By means of the definition definite integral, we have the following result: 
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         (10.2.10) 

where 

2

2

0

( )
( ) , 0,1, , .

( )

i i

i

j j

k k
k n

k k
j

A x y
A x i n

A x y



 


             (10.2.11) 

It is easy to verify that the group of functions  
0

( )
i

n

k i
A x


 is linearly  

independent and is of Kronecker property:  

    1,   ,
, {0,1, , }

0,  ,i jk k

i j
i j n A x

i j
  

     
  

Let 

0
( ) ( ) , .

i i

n

n k k
i

f x A x y x X


                       (10.2.12) 
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Then the function 
0

( ) ( )
i i

n

n k k
i

f x A x y


  is just a piecewise interpolation 

based on the group of base functions  
0

( )
i

n

k i
A x


. 

Now we have known the fact that the fuzzy systems with self-adaption 
s  is approximately a piecewise interpolation based on the group of base 

functions  
0

( )
i

n

k i
A x


, i.e., as the following: 

0
( ) ( ) ( ) , .

i i

n

n k k
i

s x f x A x y x X


    

Definition 10.2.1  For the data set as the following: 

  IOD , 0,1, ,i ix y X Y i n     , 

we can make a kind of fuzzy data set as follows: 

  IODF , ( ) ( ) 0,1, ,i iA B X Y i n     . 

If the fuzzy data set IODF satisfies the condition:  

  {0,1, , } ( ), ( )i ii n A C X B C Y    , 

then IODF is called continuous fuzzy data set. And IODF is called a kind 
of two-phase fuzzy data set, if it satisfies the following conditions: 

   

   
   

0 0

1

1

( ) 1 , ( ) 1 ,

{0,1, , 1} ( ) ( ) 1 ,

{0,1, , 1} ( ) ( ) 1

n n

i i
i i

i i

j j

x X A x y Y B y

x X i n A x A x

y Y j n B y B y

 





           
   

      

      

 




 

Clearly, the two-phase fuzzy data set must satisfy Kronecker property: 
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   1,   , 1,   ,
0,  , 0,  ,

, {0,1, , }.

i j i j

i j i j
A x B y

i j i j
i j n

  
    

 
 

  

Remark 10.2.2  When IODF is a two-phase fuzzy data set, the conclu-
sions what we got above are also true.                                                       
 

10.3   Approximation Properties of Fuzzy Systems with  
Self-adaption 

For the data set   IOD , 0,1, ,i ix y X Y i n     , we denote  

1 , 0,1, , 1i i ix x x i n     . 

Clearly we have the fact that 
0 1
max 0ii n

x n
  

    ; but on the con-

trary, it is not true. If the following condition is true: 

0 1
max 0ii n

n x
  

    , 

then the data set IOD is called harmonious; i.e., IOD is harmonious if 
and only if the following condition is true: 

0 1
max 0ii n

n x
  

    . 

From now on, we always suppose the data set IOD is harmonious. Be-
sides, for a continuous function [ , ]s C a b , if IOD with respect to s  
satisfies the interpolation condition: 

  ( {0,1, , }) i ii n y s x    

Then it is easy to know the fact that IOD is harmonious implies the fol-
lowing equivalence: 
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0
max 0

iki n
n y

 
    . 

In order to prove the following theorem, we firstly introduce what is 
the lattice close degree between two fuzzy sets. In practice, the following 
mapping is called the lattice close degree between two fuzzy sets: 

: ( ) ( ) [0,1],
( , ) ( , ) ( ) ( )c

U U
A B A B A B A B




 

   
 

               (10.3.1) 

where two mappings “  ” and “ ” are defined as the following: 

 

 

: ( ) ( ) [0,1]
( , ) ( , ) ( ) ( )

: ( ) ( ) [0,1]
( , ) ( , ) ( ) ( )

u U

u U

U U
A B A B A B A u B u

U U
A B A B A B A u B u





  

    

 

  

 


  

 

 
 

And the mapping “  ” is called the inner product and the mapping “ ” is 
called the outer product between two fuzzy sets. 

Theorem 10.3.1  For the data set of the system as the following: 

  IOD , 0,1, ,i ix y X Y i n     , 

suppose the group of fuzzy inference rules be as the following: 

  , ( ) ( ) 0,1, ,
i ik kA B X Y i n     . 

Fuzzy implication operator is taken as 13  or 14  where 13   and 

14   (see [14-17]) and fuzzy inference relation is taken as ( ( ))R W A  
where the variable weight vector : 

 0 1( ) ( ), ( ), , ( )nW A w A w A w A   

is as follows: 
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0

,
( ) , 0,1, ,

,

i
i n

i
i

A A
w A i n

A A






 


 , 

Where   means the lattice close degree. If the input of the system is taken 
as a single element set, then we have the following results: 

1) The fuzzy system with self-adaptation s  is approximately a piecewise 
nonlinear interpolation function based on the group of base functions as  
follows: 

2

2

0

( )
( ) , 0,1, , .

( )

i i

i

j j

k k
k n

k k
j

A x y
A x i n

A x y



 


                (10.3.2) 

where the interpolation function is as the following: 

0
( ) ( ) ( ) , .

i i

n

n k k
i

s x f x A x y x X


    

2) The interpolation function 1[ , ]nf C a b , i.e., ( )nf x  is smooth on 
the universe [ , ]X a b , and satisfies the following condition: 

  0, 0,1, ,n if x i n    . 

3) The interpolation function ( )nf x  is of universal approximation 
property on the universe [ , ]X a b . 

Proof.  1)  For the given group of fuzzy inference rules as follows:  

0 0

1 1

If      is      then      is   
If      is      then      is   
                   
If      is      then      is   

n n

k k

k k

k k

x A y B

x A y B

x A y B
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We can take the fuzzy implication operator 13  or 14 (e.g. we take 14 ) 
to make the following fuzzy inference relation: 

 
 

14

14

, ,

( , ) ( ), ( ) ( ) ( ),

( , ) , 0,1, , .

i i i

i i i i i

k k k

k k k k k

R A B

R x y A x B y A x B y

x y X Y i n







  

     

By means of them we get the whole fuzzy inference relation as the  
following:  

 
 

   
   

 

   

0

0 0

0

0

0

( ) ( ) 1 ( ) ( )

( ) (

( ( )) ( ) ,

,
( ( ))( , ) ( ) ( , ) ( , )

,

( ) ( ) ,

i i

i

i i i

j

i i

i i

j j

k ki iX X

k jX

n

k k
i

n n
k

k k kn
i i

k
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c
n

k k
k kn c

i
k k

j

A A A A

A A

R W A w A R

A A
R W A u v w A R u v R u v

A A

A A A A
A u B v

A A A A

 



   







 





 







           
   

 



 

 
 

   
 





 









   
 

0
) 1 ( ) ( )0

( ) ( )n i i
k jXj

n

k k
A Ai

A u B v


  




                






 

where ( )A X and ( , )u v X Y  . 
Now we arbitrarily take a point x X , which is regarded as a input 

value; then x  is turned to be a single element set as being { }A x . 
Clearly, we can learn the fact as the following: 

  { }( ), ( ) ( ) { }( )xA X X A x         . 

And for any a number {0,1, , }i n  , we have the following expression: 
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Where we use the fact: 
0

( ) 1
n

j
j

A x


 . Thus, the membership function of 

the fuzzy inference relation with self-adaption is as the following: 

    

   
0 0

( ) ( , ) { } ( , )

{ } ( , ) ( ) ( ) ( ) .
j j j j j

n n

k k k k k
j j

R W A u v R W x u v

w x R u v A x A u B v
 



   
 

Therefore, we have the following result: 

 
     

 

4

( , ) ( , )

2

0 0

( ) ( | ) ( ) ( ) ( , )

{ } ( , ) { } ( , )

( ) ( ) ( ) ( ) ( )
j j j j j

u v x y

n n

k k k k k
j j

B y B y x s x y R x y

R W x u v R W x x y

A x A x B y A x B y





 

   

 

   

         (10.3.3) 

Finally, we have the following expression: 
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where we have put 
0

( ) ( )
i i

n

n k k
i

f x A x y

 and defined the following  

symbols: 
2

2

0

( )
( ) , 0,1, ,

( )

i i

i

j j

k k
k n

k k
j

A x y
A x i n

A x y






  .             (10.3.4) 

or written as the following: 

1( )

1( )

2

2

0

( )
( ) , 0,1, , .

( )

i

j

i k

i n

j k
j

A x y
A x i n

A x y











 


  

2) Prove 1[ , ]nf C a b .  
In effect, for arbitrarily given a point [ , ]x a b , there must exist a 

number {0,1, , 1}i n  , such that  1,i ix x x  . From the structure of 

these fuzzy sets , 0,1, ,jA j n  , we can know the fact:  
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  {0,1, , } { , 1} ( ) 0kk n i i A x      

so that 1 1( ) ( ) ( )n i i i if x A x y A x y   .  Clearly ( )nf x  is continuous at 

everywhere in [ , ]a b . It is easy to know the fact that 
d ( )

d
nf x
x

 is continu-

ous at everywhere in every open interval as the following:  

 1, , 0,1, , 1i ix x i n   . 

Thus, we only need to prove that 
d ( )

d
nf x
x

 is also continuous at every 

node ( 0,1, , )ix i n   (when 0i   or i n , we only need to prove 
d ( )

d
nf x
x

 is left or right continuous at ix ).  

Now we can assume the number {0, }i n . Let ix x . Then we have 

the expression:  n i if x y . In a neighborhood of the node ix , we con-

sider the left limit or right limit of 
d ( )

d
nf x
x

 at ix .  

In fact, firstly, we see the left limit. At this situation, ix x , and we 
can have the following limit expression: 

 

1 1( 1) ( )

1 1( 1) ( )

1 1( 1) ( )

1 1

2 2
1 1

2 2
1

2 2

1
1

1 1

1

d ( ) d ( ) ( )
d d

( ) ( )d
d ( ) ( )

d
d

i i

i i

i i

n
i i i i

i k i i k i

i k i k

i i
k i k i

i i i i

i

i i

f x A x y A x y
x x

A x y y A x y y

x A x y A x y

x x x xy y y y
x x x x

x x x
x x

 

 

 

 

 

 

 

 






 



 

   
 
   
 

    
         

 
 1 1( 1) ( )

2 2

1

1
i i

i
k k

i i

x xy y
x x  





 
 
 
              

 



 Fuzzy Systems with a Kind of Self-adaption 469 
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Then we see the right limit. At this situation, ix x . Similarly, we have 
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0 0.ix 

 

So we have the following result:  

0 0

d ( ) d ( )lim lim 0
d di i

n n
x x x x

f x f x
x x   

   

which means that 
d ( )

d
nf x
x

 is continuous at every node ( 0,1, , )ix i n  . 

Thus 
d ( )

d
nf x
x

 is continuous in [ , ]X a b , i.e., ( )nf x  is smooth in the 

universe [ , ]X a b .    

3) It is easy to verify the fact that the group of functions  
0

n

i i
A


 satis-

fies the conditions: this group of functions ( ) ( 0,1, , )iA x i n   are con-

tinuous in the universe X  and 
0

( ) 1
n

i
i

A x


  and  
0

n

i i
A


 is of two-phase 

property. So nf  must have the universal approximation. 
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    For any a continuous function [ , ],s C a b  suppose the data set IOD 
satisfies the following interpolation condition with respect to ( )s x : 

    {0,1, , } i ii n y s x   . 

We prove the fact that ns  converges to s  according to the norm in the 

linear norm space  [ , ],C a b  , i.e., for arbitrarily given  0  , we 

have the following expression: 

   nN n n N s s           . 

In practice, for the given 0  , we can know the following result: 

 1 1( )
2n nN n n N f s            

 
   

So, when 1n N , we must have the following inequality: 

2n n n n ns s s f f s s f 
   

        . 

Thus, we only consider to estimate ns f


 .  

In fact, it is not difficult to know that  
0

( )
i

n

k i
A x


 is of two-phase 

property, and for any [ , ]x a b , there must exist a {0,1, , 1}i n  , 
such that  1,i ix x x  . Thus, we have the following equation: 

1 1
( ) ( ) ( )

i i i in k k k kf x A x y A x y
 

  . 

And by means of the following expression:  

1
0

( ) ( ) ( ) 1
i i i

n

k k k
i

A x A x A x




   , 
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we have the following inequality: 

 
      

   
     

1 1

1 1 1

1 1

1 1

( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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s x f x s x A x y A x y

s x A x A x A x s x A x s x

A x s x s x A x s x s x

s x s x s x s x s x s x

 

  

 

   

   

   

   

     

 

Because [ , ]s C a b , ( )s x  is uniformly continuous in [ , ]a b ; for the 
given 0  , there must exist 0  , such that 

      , [ , ] 4x x a b x x s x s x             . 

Then by using the fact that IOD is harmonious, we can have the follow-
ing result: 

   2 2 0 1
max ii n

N n n N x  

  
          

By noting the fact that  1,i ix x x  , we can learn the inequality: 

1 1 0 1
max max maxm m ii m i i m i i n

x x x x 
        

      , 

so that 

 
1

( ) ( ) 2 max ( ) 2 .
4 2n mi m i

s x f x s x s x  
  

      

Since x  is arbitrarily taken in [ , ]a b , we have the following inequality: 

[ , ]
max ( ) ( ) ,

2nx a b
s x f x 
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i.e. 
2ns f 

  . Now we take  1 2max ,N N N   , we must have 

the following expression: 

  2 2nn n N s s   


         
 

  

This means that ns  is surely of universal approximation property.            

Remark 10.3.1  We can prove the result that 2[ , ]nf C a b .  
In fact, for any a node ( 1, , 1)ix i n  , when ix x , we have the 

following limit expression: 
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And when ix x , we have another limit expression: 
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This means that the following equation is true: 

2 2

2 20 0

d ( ) d ( )lim lim
d di i

n n
x x x x

f x f x
x x   

 , 

i.e. 2[ , ]nf C a b .                                                                                      

Theorem 10.3.2  For the data set of the system as the following: 

  IOD , 0,1, ,i ix y X Y i n     , 

suppose the group of fuzzy inference rules is as the following: 

  , ( ) ( ) 0,1, ,
i ik kA B X Y i n      

where ( 0,1, , )
ikA i n   are as the following: 

2

2

0

( )
( ) , 0,1, , ,

( )

i i

i

j j

k k
k n

k k
j

A x y
A x i n

A x y



 


  

where ( 0,1, , )
ikA i n   and ( 0,1, , )

ikB i n   all can be taken as tri-

angle wave membership functions. And the fuzzy implication operator 
should be taken as 13  or 14 , and the fuzzy inference relation is with 
self-adaption, i.e. ( ( ))R W A , where the variable weight vector: 

 0 1( ) ( ), ( ), , ( )nW A w A w A w A   

is as the following: 
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 , 
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where   means lattice close degree. If the input value is taken as single 
element set, then we have the following results: 

1) The fuzzy system with self-adaption s  is approximately as a 
piecewise nonlinear interpolation as the following: 

0
( ) ( ) ( ) , ,

i i

n

n k k
i

s x f x A x y x X


    

where 

 
 

   
   

2 4 3
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i n
 

 
 

 



 


    (10.3.5) 

2) The interpolation function 3[ , ]nf C a b , which ( )nf x  is of 3  
order smoothness in the universe [ , ]X a b . 

3) The interpolation function ( )nf x  is of universal approximation 
property in the universe [ , ]X a b . 

The proof of the theorem is similar to the proof of Theorem 103.1. We 
omit it.                                                                                                        

Theorem 10.3.3  For the data set of the system as the following: 

  IOD , 0,1, ,i ix y X Y i n     , 

suppose the group of fuzzy inference rules is taken as the following: 

  4 , ( ) ( ) 0,1, ,
i ik kA B X Y i n      

where , ( 0,1, , )
i ik kA B i n   are all triangle wave membership func-

tions. We have the following results: 
 



 Fuzzy Systems with a Kind of Self-adaption 475 
 

1) The fuzzy system formed by CRI method s  is approximately as a 
piecewise nonlinear interpolation as the following: 

#

0
( ) ( ) ( ) , .

i i

n

n k k
i

s x f x A x y x X


    

where 

4
#

4

0

( )
( ) , 0,1, , .

( )

i i

i

j j

k k
k n

k k
j

A x y
A x i n

A x y



 


              (10.3.6) 

2) The interpolation function 3[ , ]nf C a b , which ( )nf x  is of 3  
order smoothness in [ , ]X a b . 

3) The interpolation function ( )nf x  is of universal approximation 
property in the universe [ , ]X a b . 

The proof of the theorem is omitted.                                                     

10.4   Examples 

Example 10.4.1  We consider to use a kind of fuzzy system ( )nf x  to  
approximate the well-known continuous function as follows: 

( ) sin [0,10]s x x C  . 

For doing this thing, we first make an equidistant partition for the uni-
verse [0,10]X   as the following: 

10 , 0,1, , 1.ih x n i n                      (10.4.1) 

Second we take the fuzzy system ( )nf x  as the following: 

0
( ) ( ) ,

i i

n

n k k
i

f x A x y
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where ( )

ikA x  are taken as triangle wave membership functions and the 

base functions ( )
ikA x  as follows: 

0

( )
( ) , 0,1, , .

( )

i i

i

j j

k k
k n

k k
j

A x y
A x i n

A x y






 


  

 

 
Fig. 10.4.1. Approximation situation with 10n   

 
 

When 10n  , the situation of ( )nf x  approximating  ( ) sins x x  is 
shown as Figure 10.4.1. 

In these figures, “Trimf ” means triangle wave membership functions 
and “Basef ” does base functions. 
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Fig. 10.4.2. Approximation situation with 50n   

 
When 50n  , the situation of ( )nf x  approximating ( ) sins x x  is 

shown as Figure 10.4.2.                                                                             
 

 

Fig. 10.4.3. Approximation situation with 10n   
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Example 10.4.2  We also consider to use a kind of fuzzy system ( )nf x  
to approximate ( ) sin [0,10]s x x C  . First we use (10.4.1) again.  
Second we take the fuzzy system ( )nf x  as the following: 

0
( ) ( ) ,

i i

n

n k k
i

f x A x y


  

where ( )
ikA x  are taken as triangle wave membership functions and the 

base functions ( )
ikA x  as follows: 

2

2

0

( )
( ) , 0,1, , .

( )

i i

i

j j

k k
k n

k k
j

A x y
A x i n

A x y



 




 

When 10n  , the situation of ( )nf x  approximating  ( ) sins x x  is 
shown as Figure 10.4.3. 

 

 
Fig. 10.4.4. Approximation situation with 50n   
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When 50n  , the situation of ( )nf x  approximating ( ) sins x x  is 
shown as Figure 10.4.4.                                                                             

Example 10.4.3  We again consider to use a kind of fuzzy system  ( )nf x  
to approximate ( ) sin [0,10]s x x C  . First we use (10.4.1) again. Sec-
ond we take the fuzzy system ( )nf x  as the following: 

0
( ) ( ) ,

i i

n

n k k
i

f x A x y


  

where ( )
ikA x  are taken as triangle wave membership functions and the 

base functions ( )
ikA x  as follows: 

 
 

   
   

2 4 3

2 4 3

0 0

( ) ( )
( ) ,

( ) ( )

0,1, , .

i i i i

i

j j j j

k k k k
k n n

k k k k
j j

A x y A x y
A x

A x y A x y

i n
 

 
 

 



 


 

 
Fig. 10.4.5. Approximation situation with 10n   
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Fig. 10.4.6. Approximation situation with 50n   
 

When 10n  , the situation of ( )nf x  approximating  ( ) sins x x  is 
shown as Figure 10.4.5. 

When 50n  , the situation of ( )nf x  approximating ( ) sins x x  is 
shown as Figure 10.4.6.                                                                             

Example 10.4.4  We continue to consider to use the fuzzy system ( )nf x  
to approximate the function ( ) sin [0,10]s x x C  . First we use 
(10.4.1) again. Second we take the fuzzy system ( )nf x  as the following: 

#

0
( ) ( ) ,

i i

n

n k k
i

f x A x y


  

where ( )
ikA x  are taken as triangle wave membership functions and the 

base functions # ( )
ikA x  as follows: 

4
#

4

0

( )
( ) , 0,1, , .

( )

i i

i

j j

k k
k n

k k
j

A x y
A x i n

A x y
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Fig. 10.4.7. Approximation situation with 10n   

 
 

 
Fig. 10.4.8. Approximation situation with 50n   

 
When 10n  , the situation of ( )nf x  approximating  ( ) sins x x  is 

shown as Figure 10.4.7. 
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When 50n  , the situation of ( )nf x  approximating ( ) sins x x  is 
shown as Figure 10.4.8.                                                                             

10.5   Conclusions 

In this chapter, we discuss a kind of fuzzy systems with self-adaption. 
First, we present the self-adaptive fuzzy inference method and the  
construction of self-adaptive fuzzy system. Second, we prove that the 
self-adaptive fuzzy system not only has universal approximation but also 
a better smoothness. Meanwhile, we offer a method to construct fuzzy 
inference antecegents, such that CRI method has a general meaning. 
These methods will offer a lot of help for modelling on a great deal of 
uncertainty systems in some theory or real practice cases.  At last, we 
give several examples to show that these methods are very effective for 
approximating many real continuous functions.  
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